Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2013, Volume 282, Pages 69–79
DOI: https://doi.org/10.1134/S0371968513030060
(Mi tm3490)
 

This article is cited in 2 scientific papers (total in 2 papers)

Subcritical catalytic branching random walk with finite or infinite variance of offspring number

E. Vl. Bulinskaya

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (209 kB) Citations (2)
References:
Abstract: Subcritical catalytic branching random walk on the $d$-dimensional integer lattice is studied. New theorems concerning the asymptotic behavior of distributions of local particle numbers are established. To prove the results, different approaches are used, including the connection between fractional moments of random variables and fractional derivatives of their Laplace transforms. In the previous papers on this subject only supercritical and critical regimes were investigated under the assumptions of finiteness of the first moment of offspring number and finiteness of the variance of offspring number, respectively. In the present paper, for the offspring number in the subcritical regime, the finiteness of the moment of order $1+\delta$ is required where $\delta $ is some positive number.
Received in November 2012
English version:
Proceedings of the Steklov Institute of Mathematics, 2013, Volume 282, Pages 62–72
DOI: https://doi.org/10.1134/S0081543813060060
Bibliographic databases:
Document Type: Article
UDC: 519.218.25
Language: Russian
Citation: E. Vl. Bulinskaya, “Subcritical catalytic branching random walk with finite or infinite variance of offspring number”, Branching processes, random walks, and related problems, Collected papers. Dedicated to the memory of Boris Aleksandrovich Sevastyanov, corresponding member of the Russian Academy of Sciences, Trudy Mat. Inst. Steklova, 282, MAIK Nauka/Interperiodica, Moscow, 2013, 69–79; Proc. Steklov Inst. Math., 282 (2013), 62–72
Citation in format AMSBIB
\Bibitem{Bul13}
\by E.~Vl.~Bulinskaya
\paper Subcritical catalytic branching random walk with finite or infinite variance of offspring number
\inbook Branching processes, random walks, and related problems
\bookinfo Collected papers. Dedicated to the memory of Boris Aleksandrovich Sevastyanov, corresponding member of the Russian Academy of Sciences
\serial Trudy Mat. Inst. Steklova
\yr 2013
\vol 282
\pages 69--79
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3490}
\crossref{https://doi.org/10.1134/S0371968513030060}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3308582}
\elib{https://elibrary.ru/item.asp?id=20280546}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2013
\vol 282
\pages 62--72
\crossref{https://doi.org/10.1134/S0081543813060060}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325961800006}
\elib{https://elibrary.ru/item.asp?id=21883299}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84885984473}
Linking options:
  • https://www.mathnet.ru/eng/tm3490
  • https://doi.org/10.1134/S0371968513030060
  • https://www.mathnet.ru/eng/tm/v282/p69
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:365
    Full-text PDF :65
    References:81
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024