Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2002, Volume 238, Pages 124–143 (Mi tm349)  

This article is cited in 4 scientific papers (total in 4 papers)

Algebraic Characterization of the Monodromy of Generalized Knizhnik–Zamolodchikov Equations of $B_n$ Type

V. A. Golubevaa, V. P. Leksinb

a All-Russian Institute for Scientific and Technical Information of Russian Academy of Sciences
b Kolomna State Pedagogical Institute
Full-text PDF (283 kB) Citations (4)
References:
Abstract: The Drinfeld–Kohno theorem describes the monodromy of the Knizhnik–Zamolodchikov equation in terms of quasi-bialgebras. The present paper contains a generalization of this theorem for the case of a Knizhnik–Zamolodchikov type equation associated with the root system $B_n$. The characterization is given to those representations of the fundamental group of the complement to the singular divisor of the equation that can be realized as representations of the monodromy of the equation.
Received in December 2001
Bibliographic databases:
UDC: 519.4
Language: Russian
Citation: V. A. Golubeva, V. P. Leksin, “Algebraic Characterization of the Monodromy of Generalized Knizhnik–Zamolodchikov Equations of $B_n$ Type”, Monodromy in problems of algebraic geometry and differential equations, Collected papers, Trudy Mat. Inst. Steklova, 238, Nauka, MAIK «Nauka/Inteperiodika», M., 2002, 124–143; Proc. Steklov Inst. Math., 238 (2002), 115–133
Citation in format AMSBIB
\Bibitem{GolLek02}
\by V.~A.~Golubeva, V.~P.~Leksin
\paper Algebraic Characterization of the Monodromy of Generalized Knizhnik--Zamolodchikov Equations of $B_n$ Type
\inbook Monodromy in problems of algebraic geometry and differential equations
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2002
\vol 238
\pages 124--143
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm349}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1969309}
\zmath{https://zbmath.org/?q=an:1025.32015}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2002
\vol 238
\pages 115--133
Linking options:
  • https://www.mathnet.ru/eng/tm349
  • https://www.mathnet.ru/eng/tm/v238/p124
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:510
    Full-text PDF :285
    References:67
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024