Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2013, Volume 282, Pages 257–287
DOI: https://doi.org/10.1134/S0371968513030199
(Mi tm3480)
 

This article is cited in 6 scientific papers (total in 6 papers)

Critical Bellman–Harris branching processes with long-living particles

V. A. Vatutina, V. A. Topchiib

a Steklov Mathematical Institute of the Russian Academy of Sciences, Moscow, Russia
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences (Omsk Branch), Novosibirsk, Russia
Full-text PDF (340 kB) Citations (6)
References:
Abstract: A critical indecomposable two-type Bellman–Harris branching process is considered in which the life-length of the first-type particles has finite variance while the tail of the life-length distribution of the second-type particles is regularly varying at infinity with parameter $\beta\in(0,1]$. It is shown that, contrary to the critical indecomposable Bellman–Harris branching processes with finite variances of the life-lengths of particles of both types, the probability of observing first-type particles at a distant moment $t$ is infinitesimally less than the survival probability of the whole process. In addition, a Yaglom-type limit theorem is proved for the distribution of the number of the first-type particles at moment $t$ given that the population contains particles of the first type at this moment.
Funding agency Grant number
Russian Foundation for Basic Research 11-01-00139
This work was supported by the Russian Foundation for Basic Research, project no. 11-01-00139.
Received in November 2012
English version:
Proceedings of the Steklov Institute of Mathematics, 2013, Volume 282, Pages 243–272
DOI: https://doi.org/10.1134/S0081543813060199
Bibliographic databases:
Document Type: Article
UDC: 519.218.24
Language: Russian
Citation: V. A. Vatutin, V. A. Topchii, “Critical Bellman–Harris branching processes with long-living particles”, Branching processes, random walks, and related problems, Collected papers. Dedicated to the memory of Boris Aleksandrovich Sevastyanov, corresponding member of the Russian Academy of Sciences, Trudy Mat. Inst. Steklova, 282, MAIK Nauka/Interperiodica, Moscow, 2013, 257–287; Proc. Steklov Inst. Math., 282 (2013), 243–272
Citation in format AMSBIB
\Bibitem{VatTop13}
\by V.~A.~Vatutin, V.~A.~Topchii
\paper Critical Bellman--Harris branching processes with long-living particles
\inbook Branching processes, random walks, and related problems
\bookinfo Collected papers. Dedicated to the memory of Boris Aleksandrovich Sevastyanov, corresponding member of the Russian Academy of Sciences
\serial Trudy Mat. Inst. Steklova
\yr 2013
\vol 282
\pages 257--287
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3480}
\crossref{https://doi.org/10.1134/S0371968513030199}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3308595}
\elib{https://elibrary.ru/item.asp?id=20280559}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2013
\vol 282
\pages 243--272
\crossref{https://doi.org/10.1134/S0081543813060199}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325961800019}
\elib{https://elibrary.ru/item.asp?id=21883369}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84886024707}
Linking options:
  • https://www.mathnet.ru/eng/tm3480
  • https://doi.org/10.1134/S0371968513030199
  • https://www.mathnet.ru/eng/tm/v282/p257
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024