Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2013, Volume 281, Pages 32–41
DOI: https://doi.org/10.1134/S0371968513020040
(Mi tm3464)
 

This article is cited in 6 scientific papers (total in 6 papers)

A new shimmy model

V. F. Zhuravleva, D. M. Klimova, P. K. Plotnikovb

a Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences, Moscow, Russia
b Saratov State Technical University, Saratov, Russia
Full-text PDF (327 kB) Citations (6)
References:
Abstract: Shimmy is a phenomenon of intense angular self-excited vibrations of the wheels of a carriage. Such self-excited vibrations present a serious threat to traffic safety, which accounts for the great interest of researchers in this phenomenon. The problem is of highest importance for the front wheels of aircraft. Usually, the deformation of pneumatic tires is considered to be the main factor responsible for shimmy. Without challenging this thesis, we nevertheless note that this is not the only factor. The shimmy phenomenon can be observed in everyday life in the case of various carriages that often have nothing to do with pneumatics if the wheels are rigid. Below we will show that the theory of polycomponent dry friction fully explains the shimmy phenomenon for absolutely rigid wheels and, hence, is at least one of the factors responsible for shimmy in the general case. The reason why researchers have not taken dry friction into account when explaining shimmy is that the theory of this kind of friction has not been well developed; at the same time one has failed to explain shimmy in the framework of other existing theories.
Received in September 2012
English version:
Proceedings of the Steklov Institute of Mathematics, 2013, Volume 281, Pages 27–36
DOI: https://doi.org/10.1134/S0081543813040044
Bibliographic databases:
Document Type: Article
UDC: 531
Language: Russian
Citation: V. F. Zhuravlev, D. M. Klimov, P. K. Plotnikov, “A new shimmy model”, Modern problems of mechanics, Collected papers. Dedicated to Academician Andrei Gennad'evich Kulikovskii on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 281, MAIK Nauka/Interperiodica, Moscow, 2013, 32–41; Proc. Steklov Inst. Math., 281 (2013), 27–36
Citation in format AMSBIB
\Bibitem{ZhuKliPlo13}
\by V.~F.~Zhuravlev, D.~M.~Klimov, P.~K.~Plotnikov
\paper A new shimmy model
\inbook Modern problems of mechanics
\bookinfo Collected papers. Dedicated to Academician Andrei Gennad'evich Kulikovskii on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2013
\vol 281
\pages 32--41
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3464}
\crossref{https://doi.org/10.1134/S0371968513020040}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3479930}
\elib{https://elibrary.ru/item.asp?id=20193377}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2013
\vol 281
\pages 27--36
\crossref{https://doi.org/10.1134/S0081543813040044}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000322390600004}
Linking options:
  • https://www.mathnet.ru/eng/tm3464
  • https://doi.org/10.1134/S0371968513020040
  • https://www.mathnet.ru/eng/tm/v281/p32
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:422
    Full-text PDF :259
    References:87
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024