Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2002, Volume 238, Pages 86–96 (Mi tm346)  

This article is cited in 3 scientific papers (total in 3 papers)

Équations fonctionnelles associées à des fonctions analytiques

J. Briançon, Ph. Maisonobe, M. Merlea

a Université de Nice Sophia Antipolis
Full-text PDF (222 kB) Citations (3)
References:
Abstract: Let $X$ be a  $X$, and denote by $F=f_1\dots f_p$ their product. Given a regular holonomic $\mathcal D_X$-module $\mathcal M$ and a section $m\in \mathcal M$, denote by $B(x,f_1,\dots ,f_p,m)$ the Bernstein–Sato ideal of $\mathbf C[s_1,\dots, s_p]$ consisting of polynomials $b(s_1,\dots ,s_p)$ such that there exists, in a neighborhood of $x\in F^{-1}(0)$, a differential operator $P(s_1,\dots,s_p)\in \mathcal D_X \otimes _{\mathbf C}\mathbf C[s_1,\dots , s_p]$ satisfying $P(s_1,\dots ,s_p)m f_1^{s_1+1}\dots f_p^{s_p+1} =b(s_1,\dots ,s_p)m f_1^{s_1}\dots f_p^{s_p}$. Claude Sabbah proved that this ideal is nonzero. One can associate to the characteristic variety of the $\mathcal D_X[s_1,\ldots ,s_p]$-module $\mathcal D_X[s_1,\ldots,s_p]m f_1^{s_1}\dots f_p^{s_p}$ a finite set ${\mathcal H}_{f,m}$ of hyperplanes in $\mathbf C^p$. We prove that there exists a Bernstein–Sato polynomial (i.e., a nonzero member of the Bernstein–Sato ideal) which is a product of one variable polynomials if and only if the set $\mathcal H_{f,m}$ is contained in the union of the coordinate hyperplanes. In the two variables case ($p=2$) we prove that there exist a Bernstein–Sato polynomial the higher degree form of which vanishes on and only on the set $\mathcal H_{f,m}$.
Received in November 2000
Bibliographic databases:
UDC: 512.7+517.5
Language: French
Citation: J. Briançon, Ph. Maisonobe, M. Merle, “Équations fonctionnelles associées à des fonctions analytiques”, Monodromy in problems of algebraic geometry and differential equations, Collected papers, Trudy Mat. Inst. Steklova, 238, Nauka, MAIK «Nauka/Inteperiodika», M., 2002, 86–96; Proc. Steklov Inst. Math., 238 (2002), 77–87
Citation in format AMSBIB
\Bibitem{BriMaiMer02}
\by J.~Brian{\c c}on, Ph.~Maisonobe, M.~Merle
\paper \'Equations fonctionnelles associ\'ees \`a des fonctions analytiques
\inbook Monodromy in problems of algebraic geometry and differential equations
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2002
\vol 238
\pages 86--96
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm346}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1969306}
\zmath{https://zbmath.org/?q=an:1026.32017}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2002
\vol 238
\pages 77--87
Linking options:
  • https://www.mathnet.ru/eng/tm346
  • https://www.mathnet.ru/eng/tm/v238/p86
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:291
    Full-text PDF :143
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024