|
Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2002, Volume 238, Pages 70–80
(Mi tm344)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Éventails associés à des fonctions analytiques
J. Briançon, Ph. Maisonobe, M. Merlea a Université de Nice Sophia Antipolis
Abstract:
Let $X$ be a complex analytic manifold, $(f_1,\dots, f_p)$ be analytic functions on $X$, and denote by $F=f_1\dots f_p$ their product. Given a regular holonomic $\mathcal D_X$-module $\mathcal M$ and a section $m\in\mathcal M$, one can associate to the characteristic variety of the $\mathcal D_X[s_1,\ldots,s_p]$-module $\mathcal D_X[s_1,\ldots ,s_p]m f_1^{s_1}\dots f_p^{s_p}$ a finite set $\mathcal H_{f,m}$ of hyperplanes in $\mathbf C^p$. We study this characteristic variety and prove that the set $\mathcal H_{f,m}$ is contained in the union of the coordinate hyperplanes of $\mathbf C^p$ if and only if the morphism $f:\mathbf C^n \rightarrow \mathbf C^p$ has no blowing up in codimension zero and its critical locus is contained in the set $F=0$.
Received in November 2000
Citation:
J. Briançon, Ph. Maisonobe, M. Merle, “Éventails associés à des fonctions analytiques”, Monodromy in problems of algebraic geometry and differential equations, Collected papers, Trudy Mat. Inst. Steklova, 238, Nauka, MAIK «Nauka/Inteperiodika», M., 2002, 70–80; Proc. Steklov Inst. Math., 238 (2002), 61–71
Linking options:
https://www.mathnet.ru/eng/tm344 https://www.mathnet.ru/eng/tm/v238/p70
|
Statistics & downloads: |
Abstract page: | 268 | Full-text PDF : | 112 | References: | 46 |
|