Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2012, Volume 279, Pages 20–30 (Mi tm3437)  

This article is cited in 4 scientific papers (total in 4 papers)

Model-surface method: An infinite-dimensional version

V. K. Beloshapka

Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia
Full-text PDF (193 kB) Citations (4)
References:
Abstract: The model-surface method is applied to the study of real analytic submanifolds of a complex Hilbert space. Generally, the results are analogous to those in the finite-dimensional case; however, there are some peculiarities and specific difficulties. One of these peculiarities is the existence of a model surface with the Levi–Tanaka algebra of infinite length.
Received in November 2011
English version:
Proceedings of the Steklov Institute of Mathematics, 2012, Volume 279, Pages 14–24
DOI: https://doi.org/10.1134/S0081543812080032
Bibliographic databases:
Document Type: Article
UDC: 517.55
Language: Russian
Citation: V. K. Beloshapka, “Model-surface method: An infinite-dimensional version”, Analytic and geometric issues of complex analysis, Collected papers, Trudy Mat. Inst. Steklova, 279, MAIK Nauka/Interperiodica, Moscow, 2012, 20–30; Proc. Steklov Inst. Math., 279 (2012), 14–24
Citation in format AMSBIB
\Bibitem{Bel12}
\by V.~K.~Beloshapka
\paper Model-surface method: An infinite-dimensional version
\inbook Analytic and geometric issues of complex analysis
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2012
\vol 279
\pages 20--30
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3437}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3086755}
\elib{https://elibrary.ru/item.asp?id=18447428}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 279
\pages 14--24
\crossref{https://doi.org/10.1134/S0081543812080032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000314063000003}
Linking options:
  • https://www.mathnet.ru/eng/tm3437
  • https://www.mathnet.ru/eng/tm/v279/p20
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:298
    Full-text PDF :75
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024