Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2012, Volume 279, Pages 242–256 (Mi tm3426)  

This article is cited in 3 scientific papers (total in 3 papers)

Inversion formulas for complex Radon transform on projective varieties and boundary value problems for systems of linear PDEs

Gennadi M. Henkinab, Peter L. Polyakovc

a Institut de Mathématiques, Université Pierre et Marie Curie, Paris, France
b Central Economics and Mathematics Institute, Russian Academy of Sciences, Moscow, Russia
c Department of Mathematics, University of Wyoming, Laramie, WY, USA
Full-text PDF (244 kB) Citations (3)
References:
Abstract: Let $G\subset\mathbb C\mathrm P^n$ be a linearly convex compact set with smooth boundary, $D=\mathbb C\mathrm P^n\setminus G$, and let $D^*\subset(\mathbb C\mathrm P^n)^*$ be the dual domain. Then for an algebraic, not necessarily reduced, complete intersection subvariety $V$ of dimension $d$ we construct an explicit inversion formula for the complex Radon transform $R_V\colon H^{d,d-1}(V\cap D)\to H^{1,0}(D^*)$ and explicit formulas for solutions of an appropriate boundary value problem for the corresponding system of differential equations with constant coefficients on $D^*$.
Received in September 2011
English version:
Proceedings of the Steklov Institute of Mathematics, 2012, Volume 279, Pages 230–244
DOI: https://doi.org/10.1134/S0081543812080160
Bibliographic databases:
Document Type: Article
UDC: 517.552+517.554+517.955+512.73
Language: English
Citation: Gennadi M. Henkin, Peter L. Polyakov, “Inversion formulas for complex Radon transform on projective varieties and boundary value problems for systems of linear PDEs”, Analytic and geometric issues of complex analysis, Collected papers, Trudy Mat. Inst. Steklova, 279, MAIK Nauka/Interperiodica, Moscow, 2012, 242–256; Proc. Steklov Inst. Math., 279 (2012), 230–244
Citation in format AMSBIB
\Bibitem{HenPol12}
\by Gennadi~M.~Henkin, Peter~L.~Polyakov
\paper Inversion formulas for complex Radon transform on projective varieties and boundary value problems for systems of linear PDEs
\inbook Analytic and geometric issues of complex analysis
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2012
\vol 279
\pages 242--256
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3426}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3086768}
\elib{https://elibrary.ru/item.asp?id=18447459}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 279
\pages 230--244
\crossref{https://doi.org/10.1134/S0081543812080160}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000314063000016}
Linking options:
  • https://www.mathnet.ru/eng/tm3426
  • https://www.mathnet.ru/eng/tm/v279/p242
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:225
    Full-text PDF :52
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024