|
Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2012, Volume 279, Pages 242–256
(Mi tm3426)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Inversion formulas for complex Radon transform on projective varieties and boundary value problems for systems of linear PDEs
Gennadi M. Henkinab, Peter L. Polyakovc a Institut de Mathématiques, Université Pierre et Marie Curie, Paris, France
b Central Economics and Mathematics Institute, Russian Academy of Sciences, Moscow, Russia
c Department of Mathematics, University of Wyoming, Laramie, WY, USA
Abstract:
Let $G\subset\mathbb C\mathrm P^n$ be a linearly convex compact set with smooth boundary, $D=\mathbb C\mathrm P^n\setminus G$, and let $D^*\subset(\mathbb C\mathrm P^n)^*$ be the dual domain. Then for an algebraic, not necessarily reduced, complete intersection subvariety $V$ of dimension $d$ we construct an explicit inversion formula for the complex Radon transform $R_V\colon H^{d,d-1}(V\cap D)\to H^{1,0}(D^*)$ and explicit formulas for solutions of an appropriate boundary value problem for the corresponding system of differential equations with constant coefficients on $D^*$.
Received in September 2011
Citation:
Gennadi M. Henkin, Peter L. Polyakov, “Inversion formulas for complex Radon transform on projective varieties and boundary value problems for systems of linear PDEs”, Analytic and geometric issues of complex analysis, Collected papers, Trudy Mat. Inst. Steklova, 279, MAIK Nauka/Interperiodica, Moscow, 2012, 242–256; Proc. Steklov Inst. Math., 279 (2012), 230–244
Linking options:
https://www.mathnet.ru/eng/tm3426 https://www.mathnet.ru/eng/tm/v279/p242
|
Statistics & downloads: |
Abstract page: | 225 | Full-text PDF : | 52 | References: | 54 |
|