Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2012, Volume 279, Pages 59–71 (Mi tm3422)  

This article is cited in 8 scientific papers (total in 8 papers)

On amoebas of algebraic sets of higher codimension

N. A. Bushueva, A. K. Tsikh

Institute of Mathematics, Siberian Federal University, Krasnoyarsk, Russia
References:
Abstract: The amoeba of a complex algebraic set is its image under the projection onto the real subspace in the logarithmic scale. We study the homological properties of the complements of amoebas for sets of codimension higher than 1. In particular, we refine A. Henriques' result saying that the complement of the amoeba of a codimension $k$ set is $(k-1)$-convex. We also describe the relationship between the critical points of the logarithmic projection and the logarithmic Gauss map of algebraic sets.
Received in April 2012
English version:
Proceedings of the Steklov Institute of Mathematics, 2012, Volume 279, Pages 52–63
DOI: https://doi.org/10.1134/S0081543812080056
Bibliographic databases:
Document Type: Article
UDC: 512.77+517.55
Language: Russian
Citation: N. A. Bushueva, A. K. Tsikh, “On amoebas of algebraic sets of higher codimension”, Analytic and geometric issues of complex analysis, Collected papers, Trudy Mat. Inst. Steklova, 279, MAIK Nauka/Interperiodica, Moscow, 2012, 59–71; Proc. Steklov Inst. Math., 279 (2012), 52–63
Citation in format AMSBIB
\Bibitem{BusTsi12}
\by N.~A.~Bushueva, A.~K.~Tsikh
\paper On amoebas of algebraic sets of higher codimension
\inbook Analytic and geometric issues of complex analysis
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2012
\vol 279
\pages 59--71
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3422}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3086757}
\elib{https://elibrary.ru/item.asp?id=18447434}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 279
\pages 52--63
\crossref{https://doi.org/10.1134/S0081543812080056}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000314063000005}
Linking options:
  • https://www.mathnet.ru/eng/tm3422
  • https://www.mathnet.ru/eng/tm/v279/p59
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:473
    Full-text PDF :151
    References:89
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024