Abstract:
About 50 years ago M. H. Protter introduced boundary value problems that are multidimensional analogues of the classical plane Morawetz problems for equations of mixed hyperbolic-elliptic type that model transonic fluid flows. Up to now there are no general existence results for the Protter–Morawetz multidimensional problems, and an understanding of the situation is not at hand. At the same time, Protter also formulated boundary value problems in the hyperbolic part of the domain – the nonhomogeneous wave equation is studied in a (3+1)-D domain bounded by two characteristic cones and a non-characteristic ball. These problems could be considered as multidimensional variants of the Darboux problem in R2. In the frame of classical solvability the hyperbolic Protter problem is not Fredholm, because it has an infinite-dimensional cokernel. On the other hand, it is known that the unique generalized solution of a Protter problem may have a strong power-type singularity even for some very smooth right-hand side functions. This singularity is isolated at the vertex O of the boundary light cone and does not propagate along the characteristic cone. In the general case of smooth right-hand side function, some necessary and sufficient conditions for the existence of a bounded solution are given and a priori estimates for the solution are found. The semi-Fredholm solvability of the problem is proved.
Nedyu Popivanov, Todor Popov, Ingo Witt, “Solutions with exponential singularity for (3 + 1)-D Protter problems”, J. Hyper. Differential Equations, 20:02 (2023), 475
Nedyu Popivanov, Tsvetan Hristov, Rudolf Scherer, “TOPICAL ISSUES OF THERMOPHYSICS, ENERGETICS AND HYDROGASDYNAMICS IN THE ARCTIC CONDITIONS”: Dedicated to the 85th Birthday Anniversary of Professor E. A. Bondarev, 2528, “TOPICAL ISSUES OF THERMOPHYSICS, ENERGETICS AND HYDROGASDYNAMICS IN THE ARCTIC CONDITIONS”: Dedicated to the 85th Birthday Anniversary of Professor E. A. Bondarev, 2022, 030005
Zeitsch P.J., “On the Riemann Function”, Mathematics, 6:12 (2018), 316
Popov T.P., “New Singular Solutions For the (3+1)-D Protter Problem”, Bull. Karaganda Univ-Math., 91:3 (2018), 61–68
Nedyu Popivanov, Todor Popov, Allen Tesdall, “Semi-Fredholm Solvability in the Framework of Singular Solutions for the (3+1)-D Protter-Morawetz Problem”, Abstract and Applied Analysis, 2014 (2014), 1
N. Popivanov, T. Popov, R. Scherer, “Singular solutions with exponential growth to Protter's problems”, Sib. Adv. Math., 23:3 (2013), 219
Dechevski L., Popivanov N., Popov T., “Exact Asymptotic Expansion of Singular Solutions for the (2+1)-D Protter Problem”, Abstract Appl. Anal., 2012, 278542