Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2012, Volume 278, Pages 170–177 (Mi tm3408)  

Stability criterion for critical points of a model in micromagnetics

Lydia Novozhilovaa, Sergei Urazhdinb

a Western Connecticut State University, Danbury, CT, USA
b Emory University, Atlanta, GA, USA
References:
Abstract: A recent modification of a classic Landau–Lifshitz equation that includes the so-called spin-transfer torque is widely recognized in physics community as a model of magnetization dynamics in certain nanodevices. Motivated by some experimental evidence, we introduce a generalization of this model, coupled Landau–Lifshitz equations with spin-transfer torque terms, and analyze it from dynamical systems standpoint. An explicit stability criterion for the critical points in terms of all parameters of the system is derived and illustrated with stability diagrams. Our analysis provides certain guidelines for the design of magnetic nanodevices with optimized response to control parameters.
Received in July 2011
English version:
Proceedings of the Steklov Institute of Mathematics, 2012, Volume 278, Pages 161–168
DOI: https://doi.org/10.1134/S0081543812060168
Bibliographic databases:
Document Type: Article
Language: English
Citation: Lydia Novozhilova, Sergei Urazhdin, “Stability criterion for critical points of a model in micromagnetics”, Differential equations and dynamical systems, Collected papers, Trudy Mat. Inst. Steklova, 278, MAIK Nauka/Interperiodica, Moscow, 2012, 170–177; Proc. Steklov Inst. Math., 278 (2012), 161–168
Citation in format AMSBIB
\Bibitem{NovUra12}
\by Lydia~Novozhilova, Sergei~Urazhdin
\paper Stability criterion for critical points of a~model in micromagnetics
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2012
\vol 278
\pages 170--177
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3408}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3058793}
\elib{https://elibrary.ru/item.asp?id=17928421}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 278
\pages 161--168
\crossref{https://doi.org/10.1134/S0081543812060168}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309861500016}
\elib{https://elibrary.ru/item.asp?id=20475552}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84867394975}
Linking options:
  • https://www.mathnet.ru/eng/tm3408
  • https://www.mathnet.ru/eng/tm/v278/p170
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:220
    Full-text PDF :44
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024