Abstract:
We prove a theorem on the fundamental solution of an ordinary differential equation in which the role of even-order derivatives is played by powers of the Bessel operator and the role of odd-order derivatives is played by the derivatives of integer powers of the Bessel operator. The result obtained has allowed us to derive formulas for the fundamental solutions of classical singular equations with the Bessel operator when the index of the Bessel operator can take negative values greater than −1; in this case the dimension N of the Euclidean space and the total sum |γ| of the indices of the Bessel operators that appear in the equation should satisfy the condition N+|γ|−1>0.
Citation:
L. N. Lyakhov, “Fundamental solutions of singular differential equations with a Bessel DB operator”, Differential equations and dynamical systems, Collected papers, Trudy Mat. Inst. Steklova, 278, MAIK Nauka/Interperiodica, Moscow, 2012, 148–160; Proc. Steklov Inst. Math., 278 (2012), 139–151
\Bibitem{Lya12}
\by L.~N.~Lyakhov
\paper Fundamental solutions of singular differential equations with a~Bessel $D_B$ operator
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2012
\vol 278
\pages 148--160
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3406}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3058791}
\elib{https://elibrary.ru/item.asp?id=17928419}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 278
\pages 139--151
\crossref{https://doi.org/10.1134/S0081543812060144}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309861500014}
\elib{https://elibrary.ru/item.asp?id=20494329}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84867348424}
Linking options:
https://www.mathnet.ru/eng/tm3406
https://www.mathnet.ru/eng/tm/v278/p148
This publication is cited in the following 13 articles:
Á. P. Horváth, “p-Capacity with Bessel Convolution”, Potential Anal, 60:4 (2024), 1487
L. N. Lyakhov, Yu. N. Bulatov, S.A. Roschupkin, E. L. Sanina, “Fundamentalnoe reshenie singulyarnogo differentsialnogo operatora Besselya s otritsatelnym parametrom”, Izv. vuzov. Matem., 2023, no. 7, 52–65
L. N. Lyakhov, E. L. Sanina, S. A. Roshchupkin, Yu. N. Bulatov, “Fundamental Solution of a Singular Bessel Differential Operator with a Negative Parameter”, Russ Math., 67:7 (2023), 43
E. L. Shishkina, “Mean-Value Theorem for B-Harmonic Functions”, Lobachevskii J Math, 43:6 (2022), 1401
L. N. Lyakhov, Yu. N. Bulatov, S. A. Roshchupkin, E. L. Sanina, “Pseudoshift and the Fundamental Solution of the Kipriyanov $ \Delta _B$-Operator”, Diff Equat, 58:12 (2022), 1639
Dinh D.C., “On the Solution of a Weinstein-Type Equation in R-3”, Adv. Appl. Clifford Algebr., 31:1 (2021), 7
Lyakhov L.N., Sanina E.L., “Kipriyanov-Beltrami Operator With Negative Dimension of the Bessel Operators and the Singular Dirichlet Problem For the B-Harmonic Equation”, Differ. Equ., 56:12 (2020), 1564–1574
Natalya Vladimirovna Zaitseva, Trends in Mathematics, Transmutation Operators and Applications, 2020, 671
N. A. Ibragimova, “Postroenie fundamentalnogo resheniya dlya odnogo vyrozhdayuschegosya ellipticheskogo uravneniya s operatorom Besselya”, Vestnik rossiiskikh universitetov. Matematika, 24:125 (2019), 47–59
Garipov I.B., Mavlyaviev R.M., “Fundamental Solution of a Multidimensional Axisymmetric Equation”, Complex Var. Elliptic Equ., 63:9 (2018), 1290–1305
L. N. Lyakhov, “The Radon–Kipriyanov Transform of the Generalized Spherical Mean of a Function”, Math. Notes, 100:1 (2016), 100–112
L. N. Lyakhov, M. G. Lapshina, “Radon–Kipriyanov Transform of Weighted Lebesgue Classes of Compactly Supported Functions”, J Math Sci, 205:2 (2015), 247
L. N. Lyakhov, I. P. Polovinkin, E. L. Shishkina, “Formulas for the solution of the Cauchy problem for a singular wave equation with Bessel time operator”, Dokl. Math., 90:3 (2014), 737–742