Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2012, Volume 278, Pages 148–160 (Mi tm3406)  

This article is cited in 13 scientific papers (total in 13 papers)

Fundamental solutions of singular differential equations with a Bessel DB operator

L. N. Lyakhov

Voronezh State University, Voronezh, Russia
References:
Abstract: We prove a theorem on the fundamental solution of an ordinary differential equation in which the role of even-order derivatives is played by powers of the Bessel operator and the role of odd-order derivatives is played by the derivatives of integer powers of the Bessel operator. The result obtained has allowed us to derive formulas for the fundamental solutions of classical singular equations with the Bessel operator when the index of the Bessel operator can take negative values greater than 1; in this case the dimension N of the Euclidean space and the total sum |γ| of the indices of the Bessel operators that appear in the equation should satisfy the condition N+|γ|1>0.
Received in November 2011
English version:
Proceedings of the Steklov Institute of Mathematics, 2012, Volume 278, Pages 139–151
DOI: https://doi.org/10.1134/S0081543812060144
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: L. N. Lyakhov, “Fundamental solutions of singular differential equations with a Bessel DB operator”, Differential equations and dynamical systems, Collected papers, Trudy Mat. Inst. Steklova, 278, MAIK Nauka/Interperiodica, Moscow, 2012, 148–160; Proc. Steklov Inst. Math., 278 (2012), 139–151
Citation in format AMSBIB
\Bibitem{Lya12}
\by L.~N.~Lyakhov
\paper Fundamental solutions of singular differential equations with a~Bessel $D_B$ operator
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2012
\vol 278
\pages 148--160
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3406}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3058791}
\elib{https://elibrary.ru/item.asp?id=17928419}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 278
\pages 139--151
\crossref{https://doi.org/10.1134/S0081543812060144}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309861500014}
\elib{https://elibrary.ru/item.asp?id=20494329}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84867348424}
Linking options:
  • https://www.mathnet.ru/eng/tm3406
  • https://www.mathnet.ru/eng/tm/v278/p148
  • This publication is cited in the following 13 articles:
    1. Á. P. Horváth, “p-Capacity with Bessel Convolution”, Potential Anal, 60:4 (2024), 1487  crossref
    2. L. N. Lyakhov, Yu. N. Bulatov, S.A. Roschupkin, E. L. Sanina, “Fundamentalnoe reshenie singulyarnogo differentsialnogo operatora Besselya s otritsatelnym parametrom”, Izv. vuzov. Matem., 2023, no. 7, 52–65  mathnet  crossref
    3. L. N. Lyakhov, E. L. Sanina, S. A. Roshchupkin, Yu. N. Bulatov, “Fundamental Solution of a Singular Bessel Differential Operator with a Negative Parameter”, Russ Math., 67:7 (2023), 43  crossref
    4. E. L. Shishkina, “Mean-Value Theorem for B-Harmonic Functions”, Lobachevskii J Math, 43:6 (2022), 1401  crossref
    5. L. N. Lyakhov, Yu. N. Bulatov, S. A. Roshchupkin, E. L. Sanina, “Pseudoshift and the Fundamental Solution of the Kipriyanov $ \Delta _B$-Operator”, Diff Equat, 58:12 (2022), 1639  crossref
    6. Dinh D.C., “On the Solution of a Weinstein-Type Equation in R-3”, Adv. Appl. Clifford Algebr., 31:1 (2021), 7  crossref  mathscinet  isi
    7. Lyakhov L.N., Sanina E.L., “Kipriyanov-Beltrami Operator With Negative Dimension of the Bessel Operators and the Singular Dirichlet Problem For the B-Harmonic Equation”, Differ. Equ., 56:12 (2020), 1564–1574  crossref  mathscinet  isi
    8. Natalya Vladimirovna Zaitseva, Trends in Mathematics, Transmutation Operators and Applications, 2020, 671  crossref
    9. N. A. Ibragimova, “Postroenie fundamentalnogo resheniya dlya odnogo vyrozhdayuschegosya ellipticheskogo uravneniya s operatorom Besselya”, Vestnik rossiiskikh universitetov. Matematika, 24:125 (2019), 47–59  mathnet  crossref  elib
    10. Garipov I.B., Mavlyaviev R.M., “Fundamental Solution of a Multidimensional Axisymmetric Equation”, Complex Var. Elliptic Equ., 63:9 (2018), 1290–1305  crossref  mathscinet  zmath  isi  scopus
    11. L. N. Lyakhov, “The Radon–Kipriyanov Transform of the Generalized Spherical Mean of a Function”, Math. Notes, 100:1 (2016), 100–112  mathnet  crossref  crossref  mathscinet  isi  elib
    12. L. N. Lyakhov, M. G. Lapshina, “Radon–Kipriyanov Transform of Weighted Lebesgue Classes of Compactly Supported Functions”, J Math Sci, 205:2 (2015), 247  crossref
    13. L. N. Lyakhov, I. P. Polovinkin, E. L. Shishkina, “Formulas for the solution of the Cauchy problem for a singular wave equation with Bessel time operator”, Dokl. Math., 90:3 (2014), 737–742  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:643
    Full-text PDF :378
    References:145
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025