Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2002, Volume 237, Pages 290–301 (Mi tm340)  

This article is cited in 1 scientific paper (total in 1 paper)

On Lower and Upper Functions for Square Integrable Martingales

A. N. Shiryaeva, E. Valkeilab, L. Yu. Vostrikovac

a Steklov Mathematical Institute, Russian Academy of Sciences
b University of Helsinki
c Université d'Angers
Full-text PDF (188 kB) Citations (1)
References:
Abstract: We consider a locally square integrable martingale $M = (M_t,\mathcal F_t)_{t\ge 0}$ satisfying $\lim _{t\to\infty }\langle M\rangle _t = +\infty $ ($\mathsf P$-a.s.), with predictably bounded jumps $|\Delta M_s| \le g(\langle M\rangle_s)$ for $s\ge t_0\ge 0$, where $g$ is a nonnegative nondecreasing continuous function and $\langle M \rangle$ is the predictable quadratic characteristic of $M$. For a nonnegative nondecreasing continuous function $\phi$, we give a sufficient condition similar to the Kolmogorov–Petrovskii test saying when $\phi (\langle M\rangle)$ is a lower function for $|M|$. In particular, if $\phi(t)=\sqrt{2t\ln\ln t}$ and $g(t)=O({t^{1/2}}/{ (\ln t)^{1+\delta}})$, we obtain that $\sqrt {2\langle M\rangle \ln\ln \langle M\rangle _t}$ is lower for $|M|$ and $\limsup _{t\to \infty} {|M_t|}/ {\sqrt { 2\langle M\rangle \ln\ln \langle M\rangle _t}}\ge 1$ $\mathsf P$-a.s. If the predictable quadratic characteristic $\langle M\rangle$ is continuous in $t$, then, under some supplementary conditions on jumps of $M$, we prove an analogous result for $\phi (t) = \sqrt {2t\ln\ln t}$ and $g(t)=O (t^{1/2}/(\ln \ln t)^{3/2})$.
Received in January 2002
Bibliographic databases:
Document Type: Article
UDC: 519.2+519.8
Language: English
Citation: A. N. Shiryaev, E. Valkeila, L. Yu. Vostrikova, “On Lower and Upper Functions for Square Integrable Martingales”, Stochastic financial mathematics, Collected papers, Trudy Mat. Inst. Steklova, 237, Nauka, MAIK «Nauka/Inteperiodika», M., 2002, 290–301; Proc. Steklov Inst. Math., 237 (2002), 281–292
Citation in format AMSBIB
\Bibitem{ShiValVos02}
\by A.~N.~Shiryaev, E.~Valkeila, L.~Yu.~Vostrikova
\paper On Lower and Upper Functions for Square Integrable Martingales
\inbook Stochastic financial mathematics
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2002
\vol 237
\pages 290--301
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm340}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1976524}
\zmath{https://zbmath.org/?q=an:1032.60040}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2002
\vol 237
\pages 281--292
Linking options:
  • https://www.mathnet.ru/eng/tm340
  • https://www.mathnet.ru/eng/tm/v237/p290
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:593
    Full-text PDF :104
    References:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024