Abstract:
A Cauchy problem is considered for a Hamilton–Jacobi equation that preserves the Bellman type in a spatially bounded strip. Sufficient conditions are obtained under which there exists a continuous generalized (minimax/viscosity) solution to this problem with a given structure in the strip. A construction of this solution is presented.
Citation:
N. N. Subbotina, L. G. Shagalova, “Construction of a generalized solution to an equation that preserves the Bellman type in a given domain of the state space”, Mathematical control theory and differential equations, Collected papers. In commemoration of the 90th anniversary of Academician Evgenii Frolovich Mishchenko, Trudy Mat. Inst. Steklova, 277, MAIK Nauka/Interperiodica, Moscow, 2012, 243–256; Proc. Steklov Inst. Math., 277 (2012), 234–247
\Bibitem{SubSha12}
\by N.~N.~Subbotina, L.~G.~Shagalova
\paper Construction of a~generalized solution to an equation that preserves the Bellman type in a~given domain of the state space
\inbook Mathematical control theory and differential equations
\bookinfo Collected papers. In commemoration of the 90th anniversary of Academician Evgenii Frolovich Mishchenko
\serial Trudy Mat. Inst. Steklova
\yr 2012
\vol 277
\pages 243--256
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3389}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3052276}
\elib{https://elibrary.ru/item.asp?id=17759410}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 277
\pages 234--247
\crossref{https://doi.org/10.1134/S0081543812040177}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309232900017}
\elib{https://elibrary.ru/item.asp?id=23960349}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84904061712}
Linking options:
https://www.mathnet.ru/eng/tm3389
https://www.mathnet.ru/eng/tm/v277/p243
This publication is cited in the following 6 articles:
L. G. Shagalova, “Nepreryvnoe obobschennoe reshenie uravneniya Gamiltona—Yakobi s nekoertsitivnym gamiltonianom”, Materialy Vserossiiskoi nauchnoi konferentsii «Differentsialnye uravneniya i ikh prilozheniya», posvyaschennoi 85-letiyu professora M. T. Terekhina. Ryazanskii gosudarstvennyi universitet im. S.A. Esenina, Ryazan, 17–18 maya 2019 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 186, VINITI RAN, M., 2020, 144–151
N. N. Subbotina, L. G. Shagalova, “On the continuous extension of a generalized solution of the Hamilton-Jacobi equation by characteristics that form a central field of extremals”, Proc. Steklov Inst. Math. (Suppl.), 293, suppl. 1 (2016), 183–198
Yakushkina T., Saakian D.B., Hu Ch.-K., “Exact Dynamics For a Mutator Gene Model”, Chin. J. Phys., 53:5 (2015), 100904
Ghazaryan M., Saakian D.B., “the Solution of the Spatial Quasispecies Model”, Chin. J. Phys., 53:3 (2015), 060901
N. N. Subbotina, L. G. Shagalova, “Konstruktsiya nepreryvnogo minimaksnogo/vyazkostnogo resheniya uravneniya Gamiltona–Yakobi–Bellmana s neprodolzhimymi kharakteristikami”, Tr. IMM UrO RAN, 20, no. 4, 2014, 247–257
D. B. Saakian, M. H. Ghazaryan, Chin-Kun Hu, “Punctuated equilibrium and shock waves in molecular models of biological evolution”, Phys. Rev. E, 90:2 (2014), 022712