Loading [MathJax]/jax/output/SVG/config.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2012, Volume 277, Pages 243–256 (Mi tm3389)  

This article is cited in 6 scientific papers (total in 6 papers)

Construction of a generalized solution to an equation that preserves the Bellman type in a given domain of the state space

N. N. Subbotinaab, L. G. Shagalovaa

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
b Ural Federal University Named after the First President of Russia B. N. Yeltsin, Yekaterinburg, Russia
Full-text PDF (217 kB) Citations (6)
References:
Abstract: A Cauchy problem is considered for a Hamilton–Jacobi equation that preserves the Bellman type in a spatially bounded strip. Sufficient conditions are obtained under which there exists a continuous generalized (minimax/viscosity) solution to this problem with a given structure in the strip. A construction of this solution is presented.
Received in February 2012
English version:
Proceedings of the Steklov Institute of Mathematics, 2012, Volume 277, Pages 234–247
DOI: https://doi.org/10.1134/S0081543812040177
Bibliographic databases:
Document Type: Article
UDC: 517.95+517.977
Language: Russian
Citation: N. N. Subbotina, L. G. Shagalova, “Construction of a generalized solution to an equation that preserves the Bellman type in a given domain of the state space”, Mathematical control theory and differential equations, Collected papers. In commemoration of the 90th anniversary of Academician Evgenii Frolovich Mishchenko, Trudy Mat. Inst. Steklova, 277, MAIK Nauka/Interperiodica, Moscow, 2012, 243–256; Proc. Steklov Inst. Math., 277 (2012), 234–247
Citation in format AMSBIB
\Bibitem{SubSha12}
\by N.~N.~Subbotina, L.~G.~Shagalova
\paper Construction of a~generalized solution to an equation that preserves the Bellman type in a~given domain of the state space
\inbook Mathematical control theory and differential equations
\bookinfo Collected papers. In commemoration of the 90th anniversary of Academician Evgenii Frolovich Mishchenko
\serial Trudy Mat. Inst. Steklova
\yr 2012
\vol 277
\pages 243--256
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3389}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3052276}
\elib{https://elibrary.ru/item.asp?id=17759410}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 277
\pages 234--247
\crossref{https://doi.org/10.1134/S0081543812040177}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309232900017}
\elib{https://elibrary.ru/item.asp?id=23960349}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84904061712}
Linking options:
  • https://www.mathnet.ru/eng/tm3389
  • https://www.mathnet.ru/eng/tm/v277/p243
  • This publication is cited in the following 6 articles:
    1. L. G. Shagalova, “Nepreryvnoe obobschennoe reshenie uravneniya Gamiltona—Yakobi s nekoertsitivnym gamiltonianom”, Materialy Vserossiiskoi nauchnoi konferentsii «Differentsialnye uravneniya i ikh prilozheniya», posvyaschennoi 85-letiyu professora M. T. Terekhina. Ryazanskii gosudarstvennyi universitet im. S.A. Esenina, Ryazan, 17–18 maya 2019 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 186, VINITI RAN, M., 2020, 144–151  mathnet  crossref
    2. N. N. Subbotina, L. G. Shagalova, “On the continuous extension of a generalized solution of the Hamilton-Jacobi equation by characteristics that form a central field of extremals”, Proc. Steklov Inst. Math. (Suppl.), 293, suppl. 1 (2016), 183–198  mathnet  crossref  mathscinet  isi  elib
    3. Yakushkina T., Saakian D.B., Hu Ch.-K., “Exact Dynamics For a Mutator Gene Model”, Chin. J. Phys., 53:5 (2015), 100904  crossref  mathscinet  isi  elib  scopus
    4. Ghazaryan M., Saakian D.B., “the Solution of the Spatial Quasispecies Model”, Chin. J. Phys., 53:3 (2015), 060901  mathscinet  isi  elib
    5. N. N. Subbotina, L. G. Shagalova, “Konstruktsiya nepreryvnogo minimaksnogo/vyazkostnogo resheniya uravneniya Gamiltona–Yakobi–Bellmana s neprodolzhimymi kharakteristikami”, Tr. IMM UrO RAN, 20, no. 4, 2014, 247–257  mathnet  mathscinet  elib
    6. D. B. Saakian, M. H. Ghazaryan, Chin-Kun Hu, “Punctuated equilibrium and shock waves in molecular models of biological evolution”, Phys. Rev. E, 90:2 (2014), 022712  crossref  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:397
    Full-text PDF :98
    References:121
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025