Abstract:
This paper is devoted to a specification of the method of open-loop control packages, a universal instrument for verification of the solvability of problems of closed-loop control for partially observable dynamical systems. Under the assumption that the control system and observed signal are linear and the set of the admissible initial states is finite, a structure of the corresponding open-loop control packages is specified and a finite-step backward construction is described, which provides a criterion for the solvability of a problem of guaranteed closed-loop guidance onto a target set at a prescribed time.
Citation:
A. V. Kryazhimskiy, Yu. S. Osipov, “On the solvability of problems of guaranteeing control for partially observable linear dynamical systems”, Mathematical control theory and differential equations, Collected papers. In commemoration of the 90th anniversary of Academician Evgenii Frolovich Mishchenko, Trudy Mat. Inst. Steklova, 277, MAIK Nauka/Interperiodica, Moscow, 2012, 152–167; Proc. Steklov Inst. Math., 277 (2012), 144–159
\Bibitem{KryOsi12}
\by A.~V.~Kryazhimskiy, Yu.~S.~Osipov
\paper On the solvability of problems of guaranteeing control for partially observable linear dynamical systems
\inbook Mathematical control theory and differential equations
\bookinfo Collected papers. In commemoration of the 90th anniversary of Academician Evgenii Frolovich Mishchenko
\serial Trudy Mat. Inst. Steklova
\yr 2012
\vol 277
\pages 152--167
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3387}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3052269}
\elib{https://elibrary.ru/item.asp?id=17759403}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 277
\pages 144--159
\crossref{https://doi.org/10.1134/S0081543812040104}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309232900010}
\elib{https://elibrary.ru/item.asp?id=23960348}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84904061707}
Linking options:
https://www.mathnet.ru/eng/tm3387
https://www.mathnet.ru/eng/tm/v277/p152
This publication is cited in the following 19 articles:
P. G. Surkov, “Package guidance problem for a fractional-order system”, Proc. Steklov Inst. Math. (Suppl.), 325, suppl. 1 (2024), S212–S230
S. I. Kabanikhin, O. I. Krivorot'ko, “Optimization methods for solving inverse immunology and epidemiology problems”, Comput. Math. Math. Phys., 60:4 (2020), 580–589
Nikita Strelkovskii, Sergey Orlov, Lecture Notes in Control and Information Sciences - Proceedings, Stability, Control and Differential Games, 2020, 213
S. M. Orlov, N. V. Strelkovskii, “Calculation of Elements of a Guiding Program Package for Singular Clusters of the Set of Initial States in the Package Guidance Problem”, Proc. Steklov Inst. Math. (Suppl.), 308, suppl. 1 (2020), S163–S177
Patsko V., Quincampoix M., “Preface: Dgaa Special Issue on Pursuit-Evasion Games and Differential Games With Incomplete Information”, Dyn. Games Appl., 9:3, SI (2019), 569–572
P. G. Surkov, “Zadacha paketnogo navedeniya s nepolnoi informatsiei pri integralnom signale nablyudeniya”, Sib. elektron. matem. izv., 15 (2018), 373–388
Surkov P.G., “On the Problem of Package Guidance For Nonlinear Control System Via Fuzzy Approach”, IFAC PAPERSONLINE, 51:32 (2018), 733–738
V. N. Ushakov, A. A. Ershov, G. V. Parshikov, “O privedenii dvizheniya upravlyaemoi sistemy na mnozhestvo Lebega lipshitsevoi funktsii”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:4 (2018), 489–512
V. I. Maksimov, P. G. Surkov, “O razreshimosti zadachi garantirovannogo paketnogo navedeniya na sistemu tselevykh mnozhestv”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 27:3 (2017), 344–354
V. I. Maksimov, “Problem of guaranteed guidance by measuring part of the state vector coordinates”, Differ. Equ., 53:11 (2017), 1449–1457
M. S. Blizorukova, “On a control problem for a linear system with delay in the control”, Proc. Steklov Inst. Math. (Suppl.), 297, suppl. 1 (2017), 35–42
V. I. Maksimov, “On a guaranteed guidance problem under incomplete information”, Proc. Steklov Inst. Math. (Suppl.), 297, suppl. 1 (2017), 147–158
V. I. Maksimov, “Guidance problem for a distributed system with incomplete information on the state coordinates and an unknown initial state”, Differ. Equ., 52:11 (2016), 1442–1452
V. L. Rozenberg, “A control problem under incomplete information for a linear stochastic differential equation”, Proc. Steklov Inst. Math. (Suppl.), 295, suppl. 1 (2016), 145–155
Valeriy L. Rozenberg, “A guaranteed control problem for a linear stochastic differential equation”, Ural Math. J., 1:1 (2015), 68–82
V. I. Maksimov, “Differential guidance game with incomplete information on the state coordinates and unknown initial state”, Differ. Equ., 51:12 (2015), 1656–1665
N. V. Strelkovskii, “Constructing a strategy for the guaranteed positioning guidance of a linear controlled system with incomplete data”, MoscowUniv.Comput.Math.Cybern., 39:3 (2015), 126
A. V. Kryazhimskiy, N. V. Strelkovskiy, “An open-loop criterion for the solvability of a closed-loop guidance problem with incomplete information. Linear control systems”, Proc. Steklov Inst. Math. (Suppl.), 291, suppl. 1 (2015), 113–127
A. V. Kryazhimskii, N. V. Strelkovskii, “Zadacha garantirovannogo pozitsionnogo navedeniya lineinoi upravlyaemoi sistemy k zadannomu momentu vremeni pri nepolnoi informatsii. Programmnyi kriterii razreshimosti”, Tr. IMM UrO RAN, 20, no. 4, 2014, 168–177