Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2012, Volume 277, Pages 57–73 (Mi tm3386)  

On the combinatorial structure of Rauzy graphs

M. B. Dubashinsky

Chebyshev Laboratory, St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: Let $S_m^0$ be the set of all irreducible permutations of the numbers $\{1,\dots,m\}$ ($m\ge3$). We define Rauzy induction mappings $a$ and $b$ acting on the set $S_m^0$. For a permutation $\pi\in S_m^0$, denote by $R(\pi)$ the orbit of the permutation $\pi$ under the mappings $a$ and $b$. This orbit can be endowed with the structure of an oriented graph according to the action of the mappings $a$ and $b$ on this set: the edges of this graph belong to one of the two types, $a$ or $b$. We say that the graph $R(\pi)$ is a tree composed of cycles if any simple cycle in this graph consists of edges of the same type. An equivalent formulation of this condition is as follows: a dual graph $R^*(\pi)$ of $R(\pi)$ is a tree. The main result of the paper is as follows: if the graph $R(\pi)$ of a permutation $\pi\in S_m^0$ is a tree composed of cycles, then the set $R(\pi)$ contains a permutation $\pi_0\colon i\mapsto m+1-i$, $i=1,\dots,m$. The converse result is also proved: the graph $R(\pi_0)$ is a tree composed of cycles; in this case, the structure of the graph is explicitly described.
Received in November 2011
English version:
Proceedings of the Steklov Institute of Mathematics, 2012, Volume 277, Pages 51–66
DOI: https://doi.org/10.1134/S0081543812040050
Bibliographic databases:
Document Type: Article
UDC: 519.172.4
Language: Russian
Citation: M. B. Dubashinsky, “On the combinatorial structure of Rauzy graphs”, Mathematical control theory and differential equations, Collected papers. In commemoration of the 90th anniversary of Academician Evgenii Frolovich Mishchenko, Trudy Mat. Inst. Steklova, 277, MAIK Nauka/Interperiodica, Moscow, 2012, 57–73; Proc. Steklov Inst. Math., 277 (2012), 51–66
Citation in format AMSBIB
\Bibitem{Dub12}
\by M.~B.~Dubashinsky
\paper On the combinatorial structure of Rauzy graphs
\inbook Mathematical control theory and differential equations
\bookinfo Collected papers. In commemoration of the 90th anniversary of Academician Evgenii Frolovich Mishchenko
\serial Trudy Mat. Inst. Steklova
\yr 2012
\vol 277
\pages 57--73
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3386}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3052264}
\elib{https://elibrary.ru/item.asp?id=17759398}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 277
\pages 51--66
\crossref{https://doi.org/10.1134/S0081543812040050}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309232900005}
\elib{https://elibrary.ru/item.asp?id=23960337}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84904045058}
Linking options:
  • https://www.mathnet.ru/eng/tm3386
  • https://www.mathnet.ru/eng/tm/v277/p57
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:249
    Full-text PDF :63
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024