Abstract:
In this paper we improve the estimate for the remainder term in the asymptotic formula concerning the circle problem in an arithmetic progression.
Citation:
D. I. Tolev, “On the remainder term in the circle problem in an arithmetic progression”, Number theory, algebra, and analysis, Collected papers. Dedicated to Professor Anatolii Alekseevich Karatsuba on the occasion of his 75th birthday, Trudy Mat. Inst. Steklova, 276, MAIK Nauka/Interperiodica, Moscow, 2012, 266–279; Proc. Steklov Inst. Math., 276 (2012), 261–274
\Bibitem{Tol12}
\by D.~I.~Tolev
\paper On the remainder term in the circle problem in an arithmetic progression
\inbook Number theory, algebra, and analysis
\bookinfo Collected papers. Dedicated to Professor Anatolii Alekseevich Karatsuba on the occasion of his 75th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2012
\vol 276
\pages 266--279
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3367}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2986127}
\elib{https://elibrary.ru/item.asp?id=17680286}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 276
\pages 261--274
\crossref{https://doi.org/10.1134/S0081543812010233}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303468300023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860381928}
Linking options:
https://www.mathnet.ru/eng/tm3367
https://www.mathnet.ru/eng/tm/v276/p266
This publication is cited in the following 2 articles:
McGrath O., “A Variation of the Prime K-Tuples Conjecture With Applications to Quantum Limits”, Math. Ann., 2021
Frei Ch., Sofos E., “Generalised Divisor Sums of Binary Forms Over Number Fields”, J. Inst. Math. Jussieu, 19:1 (2020), 137–173