Abstract:
In this paper, we examine the role that q-orthogonal polynomials can play in the application of Bailey pairs. The use of specializations of q-orthogonal polynomials reveals new instances of mock theta functions.
Citation:
George E. Andrews, “q-Orthogonal polynomials, Rogers–Ramanujan identities, and mock theta functions”, Number theory, algebra, and analysis, Collected papers. Dedicated to Professor Anatolii Alekseevich Karatsuba on the occasion of his 75th birthday, Trudy Mat. Inst. Steklova, 276, MAIK Nauka/Interperiodica, Moscow, 2012, 27–38; Proc. Steklov Inst. Math., 276 (2012), 21–32
Eric T. Mortenson, Ankit Sahu, “Expressing q-series in terms of building blocks of Hecke-type double-sums”, Int. J. Number Theory, 19:06 (2023), 1429
Lovejoy J., “Bailey Pairs and Indefinite Quadratic Forms, II. False Indefinite Theta Functions”, Res. Number Theory, 8:2 (2022), 24
Su-Ping Cui, Nancy S.S. Gu, Qing-Hu Hou, Chen-Yang Su, “Three-parameter mock theta functions”, Journal of Mathematical Analysis and Applications, 515:2 (2022), 126459
Qiuxia Hu, Bilal Khan, Serkan Araci, Mehmet Acikgoz, “New double-sum expansions for certain Mock theta functions”, MATH, 7:9 (2022), 17225
Liu Zh.-G., “On the Askey-Wilson Polynomials and a Q-Beta Integral”, Proc. Amer. Math. Soc., 149:11 (2021), 4639–4648
Cui S.-P., Gu N.S.S., “Some New Mock Theta Functions”, Adv. Appl. Math., 131 (2021), 102267
Patkowski A.E., “A General Double Sum Identity, Mock Theta Functions, and Bailey Pairs”, Acta Arith., 198:4 (2021), 377–385
Jia Z., Khan B., Hu Q., Niu D., “Applications of Generalized Q-Difference Equations For General Q-Polynomials”, Symmetry-Basel, 13:7 (2021), 1222
Andrews G.E., Berndt B.C., Chan S.H., Kim S., Malik A., “Four Identities For Third Order Mock Theta Functions”, Nagoya Math. J., 239 (2020), PII S0027763018000351, 173–204