Abstract:
We give an extension of Yoichi Motohashi's theorem saying that if the Riemann zeta-function on the line Res=1 attains very small values, then Vinogradov's zero-free region can be improved.
Citation:
Sergei N. Preobrazhenskiǐ, “An extension of Motohashi's observation on the zero-free region of the Riemann zeta-function”, Number theory, algebra, and analysis, Collected papers. Dedicated to Professor Anatolii Alekseevich Karatsuba on the occasion of his 75th birthday, Trudy Mat. Inst. Steklova, 276, MAIK Nauka/Interperiodica, Moscow, 2012, 233–238; Proc. Steklov Inst. Math., 276 (2012), 228–233
\Bibitem{Pre12}
\by Sergei~N.~Preobrazhenski{\v\i}
\paper An extension of Motohashi's observation on the zero-free region of the Riemann zeta-function
\inbook Number theory, algebra, and analysis
\bookinfo Collected papers. Dedicated to Professor Anatolii Alekseevich Karatsuba on the occasion of his 75th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2012
\vol 276
\pages 233--238
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3361}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2986123}
\elib{https://elibrary.ru/item.asp?id=17680282}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 276
\pages 228--233
\crossref{https://doi.org/10.1134/S0081543812010191}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303468300019}
\elib{https://elibrary.ru/item.asp?id=17983943}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860372516}
Linking options:
https://www.mathnet.ru/eng/tm3361
https://www.mathnet.ru/eng/tm/v276/p233
This publication is cited in the following 1 articles:
Proc. Steklov Inst. Math., 280, suppl. 2 (2013), S56–S64