|
Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2012, Volume 276, Pages 146–154
(Mi tm3358)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
On the general additive divisor problem
Aleksandar Ivića, Jie Wubc a Katedra Matematike, Rudarsko-geološki Fakultet, Universitet u Beogradu, Beograd, Serbia
b School of Mathematics, Shandong University, Jinan, Shandong, China
c Institut Élie Cartan Nancy, CNRS, Université Henri Poincaré (Nancy 1), INRIA, Vandœuvre-lès-Nancy, France
Abstract:
We obtain a new upper bound for the sum $\sum_{h\le H}\Delta_k(N,h)$ when $1\le H\le N$, $k\in\mathbb N$, $k\ge3$, where $\Delta_k(N,h)$ is the (expected) error term in the asymptotic formula for $\sum_{N<n\le2N}d_k(n)d_k(n+h)$, and $d_k(n)$ is the divisor function generated by $\zeta(s)^k$. When $k=3$, the result improves, for $H\ge N^{1/2}$, the bound given in a recent work of Baier, Browning, Marasingha and Zhao, who dealt with the case $k=3$.
Received in July 2011
Citation:
Aleksandar Ivić, Jie Wu, “On the general additive divisor problem”, Number theory, algebra, and analysis, Collected papers. Dedicated to Professor Anatolii Alekseevich Karatsuba on the occasion of his 75th birthday, Trudy Mat. Inst. Steklova, 276, MAIK Nauka/Interperiodica, Moscow, 2012, 146–154; Proc. Steklov Inst. Math., 276 (2012), 140–148
Linking options:
https://www.mathnet.ru/eng/tm3358 https://www.mathnet.ru/eng/tm/v276/p146
|
Statistics & downloads: |
Abstract page: | 245 | Full-text PDF : | 80 | References: | 58 |
|