Abstract:
We obtain a new upper bound for the sum $\sum_{h\le H}\Delta_k(N,h)$ when $1\le H\le N$, $k\in\mathbb N$, $k\ge3$, where $\Delta_k(N,h)$ is the (expected) error term in the asymptotic formula for $\sum_{N<n\le2N}d_k(n)d_k(n+h)$, and $d_k(n)$ is the divisor function generated by $\zeta(s)^k$. When $k=3$, the result improves, for $H\ge N^{1/2}$, the bound given in a recent work of Baier, Browning, Marasingha and Zhao, who dealt with the case $k=3$.
Citation:
Aleksandar Ivić, Jie Wu, “On the general additive divisor problem”, Number theory, algebra, and analysis, Collected papers. Dedicated to Professor Anatolii Alekseevich Karatsuba on the occasion of his 75th birthday, Trudy Mat. Inst. Steklova, 276, MAIK Nauka/Interperiodica, Moscow, 2012, 146–154; Proc. Steklov Inst. Math., 276 (2012), 140–148
\Bibitem{IviWu12}
\by Aleksandar~Ivi{\'c}, Jie~Wu
\paper On the general additive divisor problem
\inbook Number theory, algebra, and analysis
\bookinfo Collected papers. Dedicated to Professor Anatolii Alekseevich Karatsuba on the occasion of his 75th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2012
\vol 276
\pages 146--154
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3358}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2986115}
\elib{https://elibrary.ru/item.asp?id=17680274}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 276
\pages 140--148
\crossref{https://doi.org/10.1134/S0081543812010117}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303468300011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860375757}
Linking options:
https://www.mathnet.ru/eng/tm3358
https://www.mathnet.ru/eng/tm/v276/p146
This publication is cited in the following 5 articles:
Hill S.L., Huxley M.N., Lettington M.C., Schmidt K.M., “Some Properties and Applications of Non-Trivial Divisor Functions”, Ramanujan J., 51:3 (2020), 611–628
Matomaki K., Radziwill M., Tao T., “Correlations of the Von Mangoldt and Higher Divisor Functions i. Long Shift Ranges”, Proc. London Math. Soc., 118:2 (2019), 284–350
Ng N., Thom M., “Bounds and Conjectures For Additive Divisor Sums”, Funct. Approx. Comment. Math., 60:1 (2019), 97–142
Cao X., Tanigawa Y., Zhai W., “On the mean square of an arithmetical error term of the Selberg class in short intervals”, Int. J. Number Theory, 12:6 (2016), 1675–1701
Giovanni Coppola, Maurizio Laporta, “Generations of Correlation Averages”, Journal of Numbers, 2014 (2014), 1