Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2011, Volume 275, Pages 262–294 (Mi tm3343)  

This article is cited in 4 scientific papers (total in 4 papers)

Equivariant cohomology distinguishes the geometric structures of toric hyperkähler manifolds

Shintarô Kuroki

Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
Full-text PDF (399 kB) Citations (4)
References:
Abstract: Toric hyperkähler manifolds are the hyperkähler analogue of symplectic toric manifolds. The theory of Bielawski and Dancer tells us that, while a symplectic toric manifold is determined by a Delzant polytope, a toric hyperkähler manifold is determined by a smooth hyperplane arrangement. The purpose of this paper is to show that a toric hyperkähler manifold up to weak hyperhamiltonian $T$-isometry is determined not only by a smooth hyperplane arrangement up to weak linear equivalence but also by its equivariant cohomology $H_T^*(M;\mathbb Z)$ with a point $\hat a$ in $H^2(M;\mathbb R)\setminus\{0\}$ up to weak $H^*(BT;\mathbb Z)$-algebra isomorphism preserving $\hat a$.
Received in May 2011
English version:
Proceedings of the Steklov Institute of Mathematics, 2011, Volume 275, Pages 251–283
DOI: https://doi.org/10.1134/S0081543811080189
Bibliographic databases:
Document Type: Article
UDC: 515.16
Language: English
Citation: Shintarô Kuroki, “Equivariant cohomology distinguishes the geometric structures of toric hyperkähler manifolds”, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Collected papers. In commemoration of the 120th anniversary of Boris Nikolaevich Delone's birth, Trudy Mat. Inst. Steklova, 275, MAIK Nauka/Interperiodica, Moscow, 2011, 262–294; Proc. Steklov Inst. Math., 275 (2011), 251–283
Citation in format AMSBIB
\Bibitem{Kur11}
\by Shintar\^o~Kuroki
\paper Equivariant cohomology distinguishes the geometric structures of toric hyperk\"ahler manifolds
\inbook Classical and modern mathematics in the wake of Boris Nikolaevich Delone
\bookinfo Collected papers. In commemoration of the 120th anniversary of Boris Nikolaevich Delone's birth
\serial Trudy Mat. Inst. Steklova
\yr 2011
\vol 275
\pages 262--294
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3343}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2962985}
\elib{https://elibrary.ru/item.asp?id=17238830}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2011
\vol 275
\pages 251--283
\crossref{https://doi.org/10.1134/S0081543811080189}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305482400018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84856462148}
Linking options:
  • https://www.mathnet.ru/eng/tm3343
  • https://www.mathnet.ru/eng/tm/v275/p262
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024