Abstract:
A subset of the d-dimensional Euclidean space having nonempty interior is called a spindle convex body if it is the intersection of (finitely or infinitely many) congruent d-dimensional closed balls. A spindle convex body is called a “fat” one if it contains the centers of its generating balls. The main result of this paper is a proof of the illumination conjecture for “fat” spindle convex bodies in dimensions greater than or equal to 15.
Citation:
Károly Bezdek, “The illumination conjecture for spindle convex bodies”, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Collected papers. In commemoration of the 120th anniversary of Boris Nikolaevich Delone's birth, Trudy Mat. Inst. Steklova, 275, MAIK Nauka/Interperiodica, Moscow, 2011, 181–187; Proc. Steklov Inst. Math., 275 (2011), 169–176
\Bibitem{Bez11}
\by K\'aroly~Bezdek
\paper The illumination conjecture for spindle convex bodies
\inbook Classical and modern mathematics in the wake of Boris Nikolaevich Delone
\bookinfo Collected papers. In commemoration of the 120th anniversary of Boris Nikolaevich Delone's birth
\serial Trudy Mat. Inst. Steklova
\yr 2011
\vol 275
\pages 181--187
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3338}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2962978}
\elib{https://elibrary.ru/item.asp?id=17238823}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2011
\vol 275
\pages 169--176
\crossref{https://doi.org/10.1134/S0081543811080116}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305482400011}
\elib{https://elibrary.ru/item.asp?id=18007670}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84856545759}
Linking options:
https://www.mathnet.ru/eng/tm3338
https://www.mathnet.ru/eng/tm/v275/p181
This publication is cited in the following 1 articles:
Károly Bezdek, Ilya Ivanov, Cameron Strachan, “Illuminating spiky balls and cap bodies”, Discrete Mathematics, 346:1 (2023), 113135