Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2011, Volume 275, Pages 22–54 (Mi tm3337)  

This article is cited in 9 scientific papers (total in 9 papers)

Nerve complexes and moment–angle spaces of convex polytopes

A. A. Aizenberga, V. M. Buchstaberb

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
b Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
Full-text PDF (404 kB) Citations (9)
References:
Abstract: We introduce spherical nerve complexes that are a far-reaching generalization of simplicial spheres, and consider the differential ring of simplicial complexes. We show that spherical nerve complexes form a subring of this ring, and define a homomorphism from the ring of polytopes to this subring that maps each polytope $P$ to the nerve $K_P$ of the cover of the boundary $\partial P$ by facets. We develop a theory of nerve complexes and apply it to the moment–angle spaces $\mathcal Z_P$ of convex polytopes $P$. In the case of a polytope $P$ with $m$ facets, its moment–angle space $\mathcal Z_P$ is defined by the canonical embedding in the cone $\mathbb R_\geq^m$. It is well-known that the space $\mathcal Z_P$ is homeomorphic to the polyhedral product $(D^2,S^1)^{\partial P^*}$ if the polytope $P$ is simple. We show that the homotopy equivalence $\mathcal Z_P\simeq(D^2,S^1)^{K_P}$ holds in the general case. On the basis of bigraded Betti numbers of simplicial complexes, we construct a new class of combinatorial invariants of convex polytopes. These invariants take values in the ring of polynomials in two variables and are multiplicative with respect to the direct product or join of polytopes. We describe the relation between these invariants and the well-known $f$-polynomials of polytopes. We also present examples of convex polytopes whose flag numbers (in particular, $f$-polynomials) coincide, while the new invariants are different.
Received in May 2011
English version:
Proceedings of the Steklov Institute of Mathematics, 2011, Volume 275, Pages 15–46
DOI: https://doi.org/10.1134/S0081543811080025
Bibliographic databases:
Document Type: Article
UDC: 515.164.8
Language: Russian
Citation: A. A. Aizenberg, V. M. Buchstaber, “Nerve complexes and moment–angle spaces of convex polytopes”, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Collected papers. In commemoration of the 120th anniversary of Boris Nikolaevich Delone's birth, Trudy Mat. Inst. Steklova, 275, MAIK Nauka/Interperiodica, Moscow, 2011, 22–54; Proc. Steklov Inst. Math., 275 (2011), 15–46
Citation in format AMSBIB
\Bibitem{AyzBuc11}
\by A.~A.~Aizenberg, V.~M.~Buchstaber
\paper Nerve complexes and moment--angle spaces of convex polytopes
\inbook Classical and modern mathematics in the wake of Boris Nikolaevich Delone
\bookinfo Collected papers. In commemoration of the 120th anniversary of Boris Nikolaevich Delone's birth
\serial Trudy Mat. Inst. Steklova
\yr 2011
\vol 275
\pages 22--54
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3337}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2962969}
\elib{https://elibrary.ru/item.asp?id=17238814}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2011
\vol 275
\pages 15--46
\crossref{https://doi.org/10.1134/S0081543811080025}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305482400002}
\elib{https://elibrary.ru/item.asp?id=18034701}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84856477713}
Linking options:
  • https://www.mathnet.ru/eng/tm3337
  • https://www.mathnet.ru/eng/tm/v275/p22
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:496
    Full-text PDF :118
    References:87
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024