Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2011, Volume 274, Pages 314–328 (Mi tm3329)  

This article is cited in 2 scientific papers (total in 2 papers)

Attainability of the minimal exponential growth rate for free products of finite cyclic groups

A. L. Talambutsa

Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
Full-text PDF (253 kB) Citations (2)
References:
Abstract: We consider free products of two finite cyclic groups of orders $2$ and $n$, where $n$ is a prime power. For any such group $\mathbb Z_2*\mathbb Z_n=\langle a,b\mid a^2=b^n=1\rangle$, we prove that the minimal growth rate $\alpha _n$ is attained on the set of generators $\{a,b\}$ and explicitly write out an integer polynomial whose maximal root is $\alpha_n$. In the cases of $n=3,4$, this result was obtained earlier by A. Mann. We also show that under sufficiently general conditions, the minimal growth rates of a group $G$ and of its central extension $\widetilde G$ coincide and that the attainability of one implies the attainability of the other. As a corollary, the attainability is proved for some cyclic extensions of the above-mentioned free products, in particular, for groups $\langle a,b\mid a^2=b^n\rangle$, which are groups of torus knots for odd $n$.
Received in March 2011
English version:
Proceedings of the Steklov Institute of Mathematics, 2011, Volume 274, Pages 289–302
DOI: https://doi.org/10.1134/S0081543811060186
Bibliographic databases:
Document Type: Article
UDC: 512.543
Language: Russian
Citation: A. L. Talambutsa, “Attainability of the minimal exponential growth rate for free products of finite cyclic groups”, Algorithmic aspects of algebra and logic, Collected papers. Dedicated to Academician Sergei Ivanovich Adian on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 274, MAIK Nauka/Interperiodica, Moscow, 2011, 314–328; Proc. Steklov Inst. Math., 274 (2011), 289–302
Citation in format AMSBIB
\Bibitem{Tal11}
\by A.~L.~Talambutsa
\paper Attainability of the minimal exponential growth rate for free products of finite cyclic groups
\inbook Algorithmic aspects of algebra and logic
\bookinfo Collected papers. Dedicated to Academician Sergei Ivanovich Adian on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2011
\vol 274
\pages 314--328
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3329}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2962948}
\elib{https://elibrary.ru/item.asp?id=16766492}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2011
\vol 274
\pages 289--302
\crossref{https://doi.org/10.1134/S0081543811060186}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000295983200017}
\elib{https://elibrary.ru/item.asp?id=23965228}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84912049887}
Linking options:
  • https://www.mathnet.ru/eng/tm3329
  • https://www.mathnet.ru/eng/tm/v274/p314
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:316
    Full-text PDF :63
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024