Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2011, Volume 274, Pages 252–268 (Mi tm3327)  

This article is cited in 1 scientific paper (total in 1 paper)

Degree-uniform lower bound on the weights of polynomials with given sign function

Vladimir V. Podolskii

Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
Full-text PDF (271 kB) Citations (1)
References:
Abstract: A Boolean function $f\colon\{0,1\}^n\to\{0,1\}$ is called the sign function of an integer polynomial $p$ of degree $d$ in $n$ variables if it is true that $f(x)=1$ if and only if $p(x)>0$. In this case the polynomial $p$ is called a threshold gate of degree $d$ for the function $f$. The weight of the threshold gate is the sum of the absolute values of the coefficients of $p$. For any $n$ and $d\le D\le\frac{\varepsilon n^{1/5}}{\log n}$ we construct a function $f$ such that there is a threshold gate of degree $d$ for $f$, but any threshold gate for $f$ of degree at most $D$ has weight $2^{(\delta n)^d/D^{4d}}$, where $\varepsilon>0$ and $\delta>0$ are some constants. In particular, if $D$ is constant, then any threshold gate of degree $D$ for our function has weight $2^{\Omega(n^d)}$. Previously, functions with these properties have been known only for $d=1$ (and arbitrary $D$) and for $D=d$. For constant $d$ our functions are computable by polynomial size DNFs. The best previous lower bound on the weights of threshold gates for such functions was $2^{\Omega(n)}$. Our results can also be translated to the case of functions $f\colon\{-1,1\}^n\to\{-1,1\}$.
Received in October 2010
English version:
Proceedings of the Steklov Institute of Mathematics, 2011, Volume 274, Pages 231–246
DOI: https://doi.org/10.1134/S0081543811060149
Bibliographic databases:
Document Type: Article
UDC: 510.52
Language: Russian
Citation: Vladimir V. Podolskii, “Degree-uniform lower bound on the weights of polynomials with given sign function”, Algorithmic aspects of algebra and logic, Collected papers. Dedicated to Academician Sergei Ivanovich Adian on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 274, MAIK Nauka/Interperiodica, Moscow, 2011, 252–268; Proc. Steklov Inst. Math., 274 (2011), 231–246
Citation in format AMSBIB
\Bibitem{Pod11}
\by Vladimir~V.~Podolskii
\paper Degree-uniform lower bound on the weights of polynomials with given sign function
\inbook Algorithmic aspects of algebra and logic
\bookinfo Collected papers. Dedicated to Academician Sergei Ivanovich Adian on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2011
\vol 274
\pages 252--268
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3327}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2962944}
\elib{https://elibrary.ru/item.asp?id=16766486}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2011
\vol 274
\pages 231--246
\crossref{https://doi.org/10.1134/S0081543811060149}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000295983200013}
\elib{https://elibrary.ru/item.asp?id=23964433}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879911297}
Linking options:
  • https://www.mathnet.ru/eng/tm3327
  • https://www.mathnet.ru/eng/tm/v274/p252
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:394
    Full-text PDF :57
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024