Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2011, Volume 274, Pages 103–118 (Mi tm3316)  

This article is cited in 4 scientific papers (total in 4 papers)

On joint conditional complexity (entropy)

Nikolay K. Vereshchagina, Andrej A. Muchnik

a Department of Mathematical Logic and Theory of Algorithms, Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia
Full-text PDF (242 kB) Citations (4)
References:
Abstract: The conditional Kolmogorov complexity of a word $a$ relative to a word $b$ is the minimum length of a program that prints $a$ given $b$ as an input. We generalize this notion to quadruples of strings $a,b,c,d$: their joint conditional complexity $K((a\to c)\land(b\to d))$ is defined as the minimum length of a program that transforms $a$ into $c$ and transforms $b$ into $d$. In this paper, we prove that the joint conditional complexity cannot be expressed in terms of the usual conditional (and unconditional) Kolmogorov complexity. This result provides a negative answer to the following question asked by A. Shen on a session of the Kolmogorov seminar at Moscow State University in 1994: Is there a problem of information processing whose complexity is not expressible in terms of the conditional (and unconditional) Kolmogorov complexity? We show that a similar result holds for the classical Shannon entropy. We provide two proofs of both results, an effective one and a “quasi-effective” one. Finally, we present a quasi-effective proof of a strong version of the following statement: there are two strings whose mutual information cannot be extracted. Previously, only a noneffective proof of that statement has been known.
Received in June 2011
English version:
Proceedings of the Steklov Institute of Mathematics, 2011, Volume 274, Pages 90–104
DOI: https://doi.org/10.1134/S008154381106006X
Bibliographic databases:
Document Type: Article
UDC: 510.5
Language: Russian
Citation: Nikolay K. Vereshchagin, Andrej A. Muchnik, “On joint conditional complexity (entropy)”, Algorithmic aspects of algebra and logic, Collected papers. Dedicated to Academician Sergei Ivanovich Adian on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 274, MAIK Nauka/Interperiodica, Moscow, 2011, 103–118; Proc. Steklov Inst. Math., 274 (2011), 90–104
Citation in format AMSBIB
\Bibitem{VerMuc11}
\by Nikolay~K.~Vereshchagin, Andrej~A.~Muchnik
\paper On joint conditional complexity (entropy)
\inbook Algorithmic aspects of algebra and logic
\bookinfo Collected papers. Dedicated to Academician Sergei Ivanovich Adian on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2011
\vol 274
\pages 103--118
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3316}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2962936}
\elib{https://elibrary.ru/item.asp?id=16766474}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2011
\vol 274
\pages 90--104
\crossref{https://doi.org/10.1134/S008154381106006X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000295983200005}
\elib{https://elibrary.ru/item.asp?id=23965217}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84912009353}
Linking options:
  • https://www.mathnet.ru/eng/tm3316
  • https://www.mathnet.ru/eng/tm/v274/p103
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:456
    Full-text PDF :84
    References:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024