Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2011, Volume 273, Pages 247–256 (Mi tm3279)  

This article is cited in 1 scientific paper (total in 1 paper)

Self-correspondences of K3 surfaces via moduli of sheaves and arithmetic hyperbolic reflection groups

Viacheslav V. Nikulinab

a Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
b Department of Pure Mathematics, University of Liverpool, Liverpool, UK
Full-text PDF (203 kB) Citations (1)
References:
Abstract: In a series of our papers with Carlo Madonna (2002–2008), we described self-correspondences of a K3 surface over $\mathbb C$ via moduli of sheaves with primitive isotropic Mukai vectors for the Picard number 1 or 2 of the K3 surfaces. Here we give a natural and functorial answer to the same problem for an arbitrary Picard number. As an application, we characterize, in terms of self-correspondences via moduli of sheaves, K3 surfaces with reflective Picard lattice, that is, when the automorphism group of the lattice is generated by reflections up to finite index. It is known since 1981 that the number of reflective hyperbolic lattices is finite. We also formulate some natural unsolved related problems.
Received in December 2009
English version:
Proceedings of the Steklov Institute of Mathematics, 2011, Volume 273, Pages 229–237
DOI: https://doi.org/10.1134/S0081543811040110
Bibliographic databases:
Document Type: Article
UDC: 512.724+512.817.6
Language: Russian
Citation: Viacheslav V. Nikulin, “Self-correspondences of K3 surfaces via moduli of sheaves and arithmetic hyperbolic reflection groups”, Modern problems of mathematics, Collected papers. In honor of the 75th anniversary of the Institute, Trudy Mat. Inst. Steklova, 273, MAIK Nauka/Interperiodica, Moscow, 2011, 247–256; Proc. Steklov Inst. Math., 273 (2011), 229–237
Citation in format AMSBIB
\Bibitem{Nik11}
\by Viacheslav~V.~Nikulin
\paper Self-correspondences of K3 surfaces via moduli of sheaves and arithmetic hyperbolic reflection groups
\inbook Modern problems of mathematics
\bookinfo Collected papers. In honor of the 75th anniversary of the Institute
\serial Trudy Mat. Inst. Steklova
\yr 2011
\vol 273
\pages 247--256
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3279}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2893549}
\zmath{https://zbmath.org/?q=an:1226.14053}
\elib{https://elibrary.ru/item.asp?id=16456349}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2011
\vol 273
\pages 229--237
\crossref{https://doi.org/10.1134/S0081543811040110}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000295982500011}
Linking options:
  • https://www.mathnet.ru/eng/tm3279
  • https://www.mathnet.ru/eng/tm/v273/p247
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024