Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2011, Volume 272, Pages 180–187 (Mi tm3273)  

This article is cited in 14 scientific papers (total in 14 papers)

An affinity for affine quantum gravity

John R. Klauder

Department of Physics and Department of Mathematics, University of Florida, Gainesville, FL, USA
References:
Abstract: The main principle of affine quantum gravity is the strict positivity of the matrix {ˆgab(x)} composed of the spatial components of the local metric operator. Canonical commutation relations are incompatible with this principle, and they can be replaced by noncanonical, affine commutation relations. Due to the partial second-class nature of the quantum gravitational constraints, it is advantageous to use the projection operator method, which treats all quantum constraints on an equal footing. Using this method, enforcement of regularized versions of the gravitational constraint operators is formulated quite naturally as a novel and relatively well-defined functional integral involving only the same set of variables that appears in the usual classical formulation. Although perturbatively nonrenormalizable, gravity may possibly be understood nonperturbatively from a hard-core perspective that has proved valuable for specialized models.
Received in June 2010
English version:
Proceedings of the Steklov Institute of Mathematics, 2011, Volume 272, Pages 169–176
DOI: https://doi.org/10.1134/S0081543811010159
Bibliographic databases:
Document Type: Article
Language: English
Citation: John R. Klauder, “An affinity for affine quantum gravity”, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Collected papers. Dedicated to Academician Andrei Alekseevich Slavnov on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 272, MAIK Nauka/Interperiodica, Moscow, 2011, 180–187; Proc. Steklov Inst. Math., 272 (2011), 169–176
Citation in format AMSBIB
\Bibitem{Kla11}
\by John~R.~Klauder
\paper An affinity for affine quantum gravity
\inbook Problems of modern theoretical and mathematical physics: Gauge theories and superstrings
\bookinfo Collected papers. Dedicated to Academician Andrei Alekseevich Slavnov on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2011
\vol 272
\pages 180--187
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3273}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2838847}
\zmath{https://zbmath.org/?q=an:1228.83049}
\elib{https://elibrary.ru/item.asp?id=15639261}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2011
\vol 272
\pages 169--176
\crossref{https://doi.org/10.1134/S0081543811010159}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000290170500015}
\elib{https://elibrary.ru/item.asp?id=18007670}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79955741614}
Linking options:
  • https://www.mathnet.ru/eng/tm3273
  • https://www.mathnet.ru/eng/tm/v272/p180
  • This publication is cited in the following 14 articles:
    1. Hervé Bergeron, Jean-Pierre Gazeau, Przemysław Małkiewicz, Patrick Peter, “New class of exact coherent states: Enhanced quantization of motion on the half line”, Phys. Rev. D, 109:2 (2024)  crossref
    2. Bergeron H., Czuchry E., Gazeau J.P., Malkiewicz P., “Quantum Mixmaster as a Model of the Primordial Universe”, Universe, 6:1 (2020), 7  crossref  isi  scopus
    3. Frion E., Almeida C.R., “Affine Quantization of the Brans-Dicke Theory: Smooth Bouncing and the Equivalence Between the Einstein and Jordan Frames”, Phys. Rev. D, 99:2 (2019), 023524  crossref  mathscinet  isi  scopus
    4. Bergeron H., Czuchry E., Malkiewicz P., “Coherent States Quantization and Affine Symmetry in Quantum Models of Gravitational Singularities”, Coherent States and Their Applications: a Contemporary Panorama, Springer Proceedings in Physics, 205, eds. Antoine J., Bagarello F., Gazeau J., Springer-Verlag Berlin, 2018, 281–309  crossref  mathscinet  zmath  isi  scopus
    5. Bergeron H., Gazeau J.-P., “Variations a La Fourier-Weyl-Wigner on Quantizations of the Plane and the Half-Plane”, Entropy, 20:10 (2018), 787  crossref  mathscinet  isi  scopus
    6. Gazeau J.P., “Covariant Integral Quantizations and Their Applications to Quantum Cosmology”, Acta Polytech., 56:3 (2016), 173–179  crossref  isi
    7. Klauder J.R., “Enhanced Quantum Procedures That Resolve Difficult Problems”, Rev. Math. Phys., 27:5 (2015), 1530002  crossref  mathscinet  zmath  isi
    8. Klauder J.R., “Revisiting Canonical Quantization”, Mod. Phys. Lett. A, 29:21 (2014), 1430020  crossref  mathscinet  zmath  isi
    9. Bergeron H., Gazeau J.P., “Integral Quantizations with Two Basic Examples”, Ann. Phys., 344 (2014), 43–68  crossref  mathscinet  zmath  isi
    10. Bergeron H., Dapor A., Gazeau J.P., Malkiewicz P., “Smooth Big Bounce From Affine Quantization”, Phys. Rev. D, 89:8 (2014), 083522  crossref  mathscinet  isi  elib
    11. Bergeron H., Curado E.M.F., Gazeau J.P., Rodrigues Ligia M. C. S., “Quantizations From (P)Ovm'S”, 8Th International Symposium on Quantum Theory and Symmetries (Qts8), Journal of Physics Conference Series, 512, IOP Publishing Ltd, 2014, 012032  crossref  isi
    12. Syed Twareque Ali, Jean-Pierre Antoine, Jean-Pierre Gazeau, Theoretical and Mathematical Physics, Coherent States, Wavelets, and Their Generalizations, 2014, 1  crossref
    13. Claus Kiefer, “Conceptual Problems in Quantum Gravity and Quantum Cosmology”, ISRN Mathematical Physics, 2013 (2013), 1  crossref
    14. Klauder J.R., “The Utility of Affine Variables and Affine Coherent States”, J. Phys. A-Math. Theor., 45:24, SI (2012), 244001  crossref  mathscinet  zmath  adsnasa  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:192
    Full-text PDF :52
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025