Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2011, Volume 272, Pages 180–187 (Mi tm3273)  

This article is cited in 14 scientific papers (total in 14 papers)

An affinity for affine quantum gravity

John R. Klauder

Department of Physics and Department of Mathematics, University of Florida, Gainesville, FL, USA
References:
Abstract: The main principle of affine quantum gravity is the strict positivity of the matrix $\{\hat g_{ab}(x)\}$ composed of the spatial components of the local metric operator. Canonical commutation relations are incompatible with this principle, and they can be replaced by noncanonical, affine commutation relations. Due to the partial second-class nature of the quantum gravitational constraints, it is advantageous to use the projection operator method, which treats all quantum constraints on an equal footing. Using this method, enforcement of regularized versions of the gravitational constraint operators is formulated quite naturally as a novel and relatively well-defined functional integral involving only the same set of variables that appears in the usual classical formulation. Although perturbatively nonrenormalizable, gravity may possibly be understood nonperturbatively from a hard-core perspective that has proved valuable for specialized models.
Received in June 2010
English version:
Proceedings of the Steklov Institute of Mathematics, 2011, Volume 272, Pages 169–176
DOI: https://doi.org/10.1134/S0081543811010159
Bibliographic databases:
Document Type: Article
Language: English
Citation: John R. Klauder, “An affinity for affine quantum gravity”, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Collected papers. Dedicated to Academician Andrei Alekseevich Slavnov on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 272, MAIK Nauka/Interperiodica, Moscow, 2011, 180–187; Proc. Steklov Inst. Math., 272 (2011), 169–176
Citation in format AMSBIB
\Bibitem{Kla11}
\by John~R.~Klauder
\paper An affinity for affine quantum gravity
\inbook Problems of modern theoretical and mathematical physics: Gauge theories and superstrings
\bookinfo Collected papers. Dedicated to Academician Andrei Alekseevich Slavnov on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2011
\vol 272
\pages 180--187
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3273}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2838847}
\zmath{https://zbmath.org/?q=an:1228.83049}
\elib{https://elibrary.ru/item.asp?id=15639261}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2011
\vol 272
\pages 169--176
\crossref{https://doi.org/10.1134/S0081543811010159}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000290170500015}
\elib{https://elibrary.ru/item.asp?id=18007670}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79955741614}
Linking options:
  • https://www.mathnet.ru/eng/tm3273
  • https://www.mathnet.ru/eng/tm/v272/p180
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:166
    Full-text PDF :43
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024