Loading [MathJax]/jax/output/SVG/config.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2002, Volume 237, Pages 143–148 (Mi tm327)  

This article is cited in 12 scientific papers (total in 12 papers)

On Upper and Lower Prices in Discrete-Time Models

L. Rüschendorf

Albert Ludwigs University of Freiburg
References:
Abstract: A simple convex ordering argument in the class of equivalent martingale measures is used to determine the upper and lower prices of a convex claim in a general discrete-time model ($N$-period model) with bounded components. Under an approximation condition, the upper price is given by the price in a related Cox–Ross–Rubinstein model. As an application, we discuss a discrete-time stochastic volatility model.
Received in April 2001
Bibliographic databases:
UDC: 519.2+519.8
Language: English
Citation: L. Rüschendorf, “On Upper and Lower Prices in Discrete-Time Models”, Stochastic financial mathematics, Collected papers, Trudy Mat. Inst. Steklova, 237, Nauka, MAIK «Nauka/Inteperiodika», M., 2002, 143–148; Proc. Steklov Inst. Math., 237 (2002), 134–139
Citation in format AMSBIB
\Bibitem{Rus02}
\by L.~R\"uschendorf
\paper On Upper and Lower Prices in Discrete-Time Models
\inbook Stochastic financial mathematics
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2002
\vol 237
\pages 143--148
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm327}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1976511}
\zmath{https://zbmath.org/?q=an:1021.91033}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2002
\vol 237
\pages 134--139
Linking options:
  • https://www.mathnet.ru/eng/tm327
  • https://www.mathnet.ru/eng/tm/v237/p143
  • This publication is cited in the following 12 articles:
    1. Matsuda T., Takemura A., “Game-Theoretic Derivation of Upper Hedging Prices of Multivariate Contingent Claims and Submodularity”, Jpn. J. Ind. Appl. Math., 37:1 (2020), 213–248  crossref  mathscinet  isi
    2. Tkalinski T.J., “Convex Hedging of Non-Superreplicable Claims in Discrete-Time Market Models”, Math. Method Oper. Res., 79:2 (2014), 239–252  crossref  mathscinet  zmath  isi  scopus
    3. Nakajima R., Kumon M., Takemura A., Takeuchi K., “Approximations and asymptotics of upper hedging prices in multinomial models”, Japan Journal of Industrial and Applied Mathematics, 29:1 (2012), 1–21  crossref  mathscinet  zmath  isi  scopus
    4. D. B. Rokhlin, “Recurrence relations for price bounds of contingent claims in discrete time market models”, Theory Probab. Appl., 56:1 (2012), 72–95  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    5. A. Jurlewicz, A. Wyłomańska, P. Żebrowski, “Coupled continuous-time random walk approach to the Rachev-Ruschendorf model for financial data”, Physica A-Statistical Mechanics and Its Applications, 388:4 (2009), 407–418  crossref  adsnasa  isi  scopus
    6. A. Jurlewicz, A. Wyłomańska, P. Żebrowski, “Financial data analysis by means of coupled continuous-time random walk in Rachev-Ruschendorf model”, Acta Physica Polonica A, 114:3 (2008), 629–635  crossref  adsnasa  isi  elib  scopus
    7. Courtois C., Denuit M., “Convex bounds on multiplicative processes, with applications to pricing in incomplete markets”, Insurance Mathematics & Economics, 42:1 (2008), 95–100  crossref  mathscinet  zmath  isi  scopus
    8. N. Josephy, L. Kimball, V. R. Steblovskaya, A. V. Nagaev, M. Pasnievskii, “An algorithmic approach to non-self-financing hedging in a discrete-time incomplete market”, Discrete Math. Appl., 17:2 (2007), 189–207  mathnet  crossref  crossref  mathscinet  elib
    9. Ivanov R.V., “On the pricing of American options in exponential Levy markets”, Journal of Applied Probability, 44:2 (2007), 409–419  crossref  mathscinet  zmath  isi  scopus
    10. Rokhlin D.B., “Martingale selection problem and asset pricing in finite discrete time”, Electronic Communications in Probability, 12 (2007), 1–8  crossref  mathscinet  zmath  isi  scopus
    11. Bergenthum J., Ruschendorf L., “Comparison of option prices in semimartingale models”, Finance and Stochastics, 10:2 (2006), 222–249  crossref  mathscinet  zmath  isi  scopus
    12. A. A. Gushchin, É. Mordecki, “Bounds on Option Prices for Semimartingale Market Models”, Proc. Steklov Inst. Math., 237 (2002), 73–113  mathnet  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:403
    Full-text PDF :168
    References:50
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025