Abstract:
Many Ramond–Ramond backgrounds that arise in the AdS/CFT correspondence are described by integrable sigma-models. The equations of motion for classical spinning strings in these backgrounds can be solved quite generally by the finite-gap integration method via classical Bethe equations and algebraic curves. This construction is reviewed for general Z4 cosets and then exemplified by the backgrounds that arise in the AdS5/CFT4, AdS4/CFT3 and AdS3/CFT2 dualities.
Citation:
K. Zarembo, “Algebraic curves for integrable string backgrounds”, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Collected papers. Dedicated to Academician Andrei Alekseevich Slavnov on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 272, MAIK Nauka/Interperiodica, Moscow, 2011, 286–298; Proc. Steklov Inst. Math., 272 (2011), 275–287
\Bibitem{Zar11}
\by K.~Zarembo
\paper Algebraic curves for integrable string backgrounds
\inbook Problems of modern theoretical and mathematical physics: Gauge theories and superstrings
\bookinfo Collected papers. Dedicated to Academician Andrei Alekseevich Slavnov on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2011
\vol 272
\pages 286--298
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3256}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2838858}
\zmath{https://zbmath.org/?q=an:1227.81239}
\elib{https://elibrary.ru/item.asp?id=15639272}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2011
\vol 272
\pages 275--287
\crossref{https://doi.org/10.1134/S0081543811010263}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000290170500026}
\elib{https://elibrary.ru/item.asp?id=16995469}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79955742446}
Linking options:
https://www.mathnet.ru/eng/tm3256
https://www.mathnet.ru/eng/tm/v272/p286
This publication is cited in the following 4 articles:
Riccardo Borsato, Sibylle Driezen, Juan Miguel Nieto García, Leander Wyss, “Semiclassical spectrum of a Jordanian deformation of
AdS5×S5”, Phys. Rev. D, 106:6 (2022)
Abbott M.C., Aniceto I., Phys. Rev. D, 93:10 (2016), 106006