Loading [MathJax]/jax/output/SVG/config.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2010, Volume 271, Pages 187–203 (Mi tm3244)  

This article is cited in 23 scientific papers (total in 23 papers)

Stability of inflectional elasticae centered at vertices or inflection points

Yu. L. Sachkova, S. V. Levyakovb

a Program Systems Institute, Russian Academy of Sciences, Pereslavl-Zalessky, Russia
b Novosibirsk State Technical University, Novosibirsk, Russia
References:
Abstract: Stability conditions for inflectional Euler's elasticae centered at vertices or inflection points are obtained. Theoretical results are compared with experimental data for elastic rods.
Received in February 2010
English version:
Proceedings of the Steklov Institute of Mathematics, 2010, Volume 271, Pages 177–192
DOI: https://doi.org/10.1134/S0081543810040140
Bibliographic databases:
Document Type: Article
UDC: 517.97
Language: Russian
Citation: Yu. L. Sachkov, S. V. Levyakov, “Stability of inflectional elasticae centered at vertices or inflection points”, Differential equations and topology. II, Collected papers. In commemoration of the centenary of the birth of Academician Lev Semenovich Pontryagin, Trudy Mat. Inst. Steklova, 271, MAIK Nauka/Interperiodica, Moscow, 2010, 187–203; Proc. Steklov Inst. Math., 271 (2010), 177–192
Citation in format AMSBIB
\Bibitem{SacLev10}
\by Yu.~L.~Sachkov, S.~V.~Levyakov
\paper Stability of inflectional elasticae centered at vertices or inflection points
\inbook Differential equations and topology.~II
\bookinfo Collected papers. In commemoration of the centenary of the birth of Academician Lev Semenovich Pontryagin
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 271
\pages 187--203
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3244}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2847765}
\elib{https://elibrary.ru/item.asp?id=15524641}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 271
\pages 177--192
\crossref{https://doi.org/10.1134/S0081543810040140}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000287921200014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952205300}
Linking options:
  • https://www.mathnet.ru/eng/tm3244
  • https://www.mathnet.ru/eng/tm/v271/p187
  • This publication is cited in the following 23 articles:
    1. Tatsuya Miura, Kensuke Yoshizawa, “General rigidity principles for stable and minimal elastic curves”, Journal für die reine und angewandte Mathematik (Crelles Journal), 2024  crossref
    2. Yu. L. Sachkov, “Left-invariant optimal control problems on Lie groups that are integrable by elliptic functions”, Russian Math. Surveys, 78:1 (2023), 65–163  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. Ryzhak I E., “Investigation of Buckling of Rectilinear Beams With Additional Constraint At An Arbitrary Internal Point”, Q. J. Mech. Appl. Math., 75:1 (2022), 29–62  crossref  mathscinet  isi
    4. Oshri O., “Volume-Constrained Deformation of a Thin Sheet as a Route to Harvest Elastic Energy”, Phys. Rev. E, 103:3 (2021), 033001  crossref  mathscinet  isi
    5. Hafner Ch., Bickel B., “The Design Space of Plane Elastic Curves”, ACM Trans. Graph., 40:4 (2021), 126  crossref  isi
    6. Christian Hafner, Bernd Bickel, “The design space of plane elastic curves”, ACM Trans. Graph., 40:4 (2021), 1  crossref
    7. Miura T., “Elastic Curves and Phase Transitions”, Math. Ann., 376:3-4 (2020), 1629–1674  crossref  mathscinet  isi
    8. Jin M., “Stability to Discontinuous Perturbations For One Inflexion Euler Elasticas With One End Fixed and the Other Clamped in Rotation”, Eur. J. Mech. A-Solids, 81 (2020), 103954  crossref  mathscinet  isi
    9. James F. Doyle, Spectral Analysis of Nonlinear Elastic Shapes, 2020, 185  crossref
    10. James F. Doyle, Spectral Analysis of Nonlinear Elastic Shapes, 2020, 1  crossref
    11. Spagnuolo M., Andreaus U., “A Targeted Review on Large Deformations of Planar Elastic Beams: Extensibility, Distributed Loads, Buckling and Post-Buckling”, Math. Mech. Solids, 24:1 (2019), 258–280  crossref  mathscinet  isi  scopus
    12. Cazzolli A., Dal Corso F., “Snapping of Elastic Strips With Controlled Ends”, Int. J. Solids Struct., 162 (2019), 285–303  crossref  isi  scopus
    13. T.P. Kasharina, “Improving the Reliability of Shell Structures Made of Composite Nanomaterials”, SSP, 265 (2017), 365  crossref
    14. Doicheva A., “T-Shaped Frame Critical and Post-Critical Analysis”, J. THEOR. APPL. MECH.-BULG., 46:1 (2016), 65–82  crossref  mathscinet  isi  elib  scopus
    15. T.P. Kasharina, “Results of the Study on the Influence of Shell Structures on their Stability”, Procedia Engineering, 150 (2016), 1811  crossref
    16. Jin M., Bao Z.B., “An Improved Proof of Instability of Some Euler Elasticas”, J. Elast., 121:2 (2015), 303–308  crossref  mathscinet  zmath  isi  elib  scopus
    17. Batista M., “on Stability of Elastic Rod Planar Equilibrium Configurations”, Int. J. Solids Struct., 72 (2015), 144–152  crossref  mathscinet  isi  elib  scopus
    18. Batista M., “a Simplified Method To Investigate the Stability of Cantilever Rod Equilibrium Forms”, Mech. Res. Commun., 67 (2015), 13–17  crossref  isi  elib  scopus
    19. Jin M., Bao Z.B., “‘Stability in the Large’ of Columns Just At the First Bifurcation Point”, Mech. Res. Commun., 67 (2015), 31–33  crossref  isi  elib  scopus
    20. Beharic J., Lucas T.M., Harnett C.K., “Analysis of a Compressed Bistable Buckled Beam on a Flexible Support”, J. Appl. Mech.-Trans. ASME, 81:8 (2014), 081011  crossref  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:447
    Full-text PDF :113
    References:100
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025