Abstract:
Stability conditions for inflectional Euler's elasticae centered at vertices or inflection points are obtained. Theoretical results are compared with experimental data for elastic rods.
Citation:
Yu. L. Sachkov, S. V. Levyakov, “Stability of inflectional elasticae centered at vertices or inflection points”, Differential equations and topology. II, Collected papers. In commemoration of the centenary of the birth of Academician Lev Semenovich Pontryagin, Trudy Mat. Inst. Steklova, 271, MAIK Nauka/Interperiodica, Moscow, 2010, 187–203; Proc. Steklov Inst. Math., 271 (2010), 177–192
\Bibitem{SacLev10}
\by Yu.~L.~Sachkov, S.~V.~Levyakov
\paper Stability of inflectional elasticae centered at vertices or inflection points
\inbook Differential equations and topology.~II
\bookinfo Collected papers. In commemoration of the centenary of the birth of Academician Lev Semenovich Pontryagin
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 271
\pages 187--203
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3244}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2847765}
\elib{https://elibrary.ru/item.asp?id=15524641}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 271
\pages 177--192
\crossref{https://doi.org/10.1134/S0081543810040140}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000287921200014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952205300}
Linking options:
https://www.mathnet.ru/eng/tm3244
https://www.mathnet.ru/eng/tm/v271/p187
This publication is cited in the following 23 articles:
Tatsuya Miura, Kensuke Yoshizawa, “General rigidity principles for stable and minimal elastic curves”, Journal für die reine und angewandte Mathematik (Crelles Journal), 2024
Yu. L. Sachkov, “Left-invariant optimal control problems on Lie groups that are integrable by elliptic functions”, Russian Math. Surveys, 78:1 (2023), 65–163
Ryzhak I E., “Investigation of Buckling of Rectilinear Beams With Additional Constraint At An Arbitrary Internal Point”, Q. J. Mech. Appl. Math., 75:1 (2022), 29–62
Oshri O., “Volume-Constrained Deformation of a Thin Sheet as a Route to Harvest Elastic Energy”, Phys. Rev. E, 103:3 (2021), 033001
Hafner Ch., Bickel B., “The Design Space of Plane Elastic Curves”, ACM Trans. Graph., 40:4 (2021), 126
Christian Hafner, Bernd Bickel, “The design space of plane elastic curves”, ACM Trans. Graph., 40:4 (2021), 1
Jin M., “Stability to Discontinuous Perturbations For One Inflexion Euler Elasticas With One End Fixed and the Other Clamped in Rotation”, Eur. J. Mech. A-Solids, 81 (2020), 103954
James F. Doyle, Spectral Analysis of Nonlinear Elastic Shapes, 2020, 185
James F. Doyle, Spectral Analysis of Nonlinear Elastic Shapes, 2020, 1
Spagnuolo M., Andreaus U., “A Targeted Review on Large Deformations of Planar Elastic Beams: Extensibility, Distributed Loads, Buckling and Post-Buckling”, Math. Mech. Solids, 24:1 (2019), 258–280
Cazzolli A., Dal Corso F., “Snapping of Elastic Strips With Controlled Ends”, Int. J. Solids Struct., 162 (2019), 285–303
T.P. Kasharina, “Improving the Reliability of Shell Structures Made of Composite Nanomaterials”, SSP, 265 (2017), 365
Doicheva A., “T-Shaped Frame Critical and Post-Critical Analysis”, J. THEOR. APPL. MECH.-BULG., 46:1 (2016), 65–82
T.P. Kasharina, “Results of the Study on the Influence of Shell Structures on their Stability”, Procedia Engineering, 150 (2016), 1811
Jin M., Bao Z.B., “An Improved Proof of Instability of Some Euler Elasticas”, J. Elast., 121:2 (2015), 303–308
Batista M., “on Stability of Elastic Rod Planar Equilibrium Configurations”, Int. J. Solids Struct., 72 (2015), 144–152
Batista M., “a Simplified Method To Investigate the Stability of Cantilever Rod Equilibrium Forms”, Mech. Res. Commun., 67 (2015), 13–17
Jin M., Bao Z.B., “‘Stability in the Large’ of Columns Just At the First Bifurcation Point”, Mech. Res. Commun., 67 (2015), 31–33
Beharic J., Lucas T.M., Harnett C.K., “Analysis of a Compressed Bistable Buckled Beam on a Flexible Support”, J. Appl. Mech.-Trans. ASME, 81:8 (2014), 081011