Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2002, Volume 236, Pages 447–461 (Mi tm314)  

On the Asymptotic Behavior of Solutions of a Semilinear Elliptic Boundary Problem in Unbounded Domains

Yu. V. Egorova, V. A. Kondrat'evb

a Université Paul Sabatier
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We consider solutions of an elliptic linear equation $Lu=0$ of second order in an unbounded domain $Q$ in $\mathbb R^n$ supposing that $Q\subset\{x=(x',x_n)\colon 0<x_n<\infty,\, |x'|<\gamma(x_n)\}$, where $1\le \gamma(t)\le At+B$, and that $u$ satisfies the nonlinear boundary condition $\frac{\partial u}{\partial N}+k(x)u+b(x)|u(x)|^{p-1}u(x)=0$ on the part of the boundary of $Q$ where $x_n>0$. We show that any such solution $u$ growing moderately at infinity tends to $0$ as $|x|\to\infty$. Earlier we showed this theorem for the case $\gamma(x_n)=B$, i.e. for a cylindrical domain $Q=\Omega\times (0,\infty)$, $\Omega\subset\mathbb R^{n-1}$, and for the case when $A\le A_0$ with a constant $A_0$ sufficiently small. Here we admit any value of $A_0$. Our theorem is true even for the domain which is an outer part of a cone, and for the half-space $x_n>0$. Besides, we consider here more general operators $L$ with lower order terms. Notice that the new proof is quite different from those in our earlier works.
Received in February 2001
Bibliographic databases:
UDC: 517.9
Language: English
Citation: Yu. V. Egorov, V. A. Kondrat'ev, “On the Asymptotic Behavior of Solutions of a Semilinear Elliptic Boundary Problem in Unbounded Domains”, Differential equations and dynamical systems, Collected papers. Dedicated to the 80th anniversary of academician Evgenii Frolovich Mishchenko, Trudy Mat. Inst. Steklova, 236, Nauka, MAIK «Nauka/Inteperiodika», M., 2002, 447–461; Proc. Steklov Inst. Math., 236 (2002), 434–448
Citation in format AMSBIB
\Bibitem{EgoKon02}
\by Yu.~V.~Egorov, V.~A.~Kondrat'ev
\paper On the Asymptotic Behavior of Solutions
of~a~Semilinear Elliptic Boundary Problem in~Unbounded~Domains
\inbook Differential equations and dynamical systems
\bookinfo Collected papers. Dedicated to the 80th anniversary of academician Evgenii Frolovich Mishchenko
\serial Trudy Mat. Inst. Steklova
\yr 2002
\vol 236
\pages 447--461
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm314}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1931044}
\zmath{https://zbmath.org/?q=an:1032.35064}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2002
\vol 236
\pages 434--448
Linking options:
  • https://www.mathnet.ru/eng/tm314
  • https://www.mathnet.ru/eng/tm/v236/p447
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024