Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2002, Volume 236, Pages 408–427 (Mi tm312)  

This article is cited in 11 scientific papers (total in 11 papers)

The Passage from Nonconvex Discrete Systems to Variational Problems in Sobolev Spaces: The One-Dimensional Case

A. Braidesab, M. Gelliab, M. Sigalottia

a International School for Advanced Studies (SISSA)
b Università degli Studi di Roma — Tor Vergata
References:
Abstract: We treat the problem of the description of the limits of discrete variational problems with long-range interactions in a one-dimensional setting. Under some polynomial-growth condition on the energy densities, we show that it is possible to define a local limit problem on a Sobolev space described by a homogenization formula. We give examples to show that, if the growth conditions are not uniformly satisfied, then the limit problem may be of a nonlocal form or with multiple densities.
Received in December 2000
Bibliographic databases:
UDC: 517.9
Language: English
Citation: A. Braides, M. Gelli, M. Sigalotti, “The Passage from Nonconvex Discrete Systems to Variational Problems in Sobolev Spaces: The One-Dimensional Case”, Differential equations and dynamical systems, Collected papers. Dedicated to the 80th anniversary of academician Evgenii Frolovich Mishchenko, Trudy Mat. Inst. Steklova, 236, Nauka, MAIK «Nauka/Inteperiodika», M., 2002, 408–427; Proc. Steklov Inst. Math., 236 (2002), 395–414
Citation in format AMSBIB
\Bibitem{BraGelSig02}
\by A.~Braides, M.~Gelli, M.~Sigalotti
\paper The Passage from Nonconvex Discrete Systems to Variational Problems in Sobolev Spaces: The One-Dimensional Case
\inbook Differential equations and dynamical systems
\bookinfo Collected papers. Dedicated to the 80th anniversary of academician Evgenii Frolovich Mishchenko
\serial Trudy Mat. Inst. Steklova
\yr 2002
\vol 236
\pages 408--427
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm312}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1931042}
\zmath{https://zbmath.org/?q=an:1023.49009}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2002
\vol 236
\pages 395--414
Linking options:
  • https://www.mathnet.ru/eng/tm312
  • https://www.mathnet.ru/eng/tm/v236/p408
  • This publication is cited in the following 11 articles:
    1. Braides A., Kreutz L., “An Integral-Representation Result For Continuum Limits of Discrete Energies With Multibody Interactions”, SIAM J. Math. Anal., 50:2 (2018), 1485–1520  crossref  mathscinet  zmath  isi  scopus
    2. Schaeffner M., Schloemerkemper A., “On Lennard-Jones Systems With Finite Range Interactions and Their Asymptotic Analysis”, Netw. Heterog. Media, 13:1 (2018), 95–118  crossref  mathscinet  isi  scopus
    3. Braides A., Solci M., “Asymptotic analysis of Lennard-Jones systems beyond the nearest-neighbour setting: A one-dimensional prototypical case”, Math. Mech. Solids, 21:8 (2016), 915–930  crossref  mathscinet  zmath  isi  scopus
    4. Alicandro R., Ansini N., “a Variational Model of Interaction Between Continuum and Discrete Systems”, Math. Models Meth. Appl. Sci., 24:10 (2014), 1957–2008  crossref  mathscinet  zmath  isi  elib  scopus
    5. Alicandro R., Braides A., Cicalese M., “Continuum limits of discrete thin films with superlinear growth densities”, Calc. Var. Partial Differential Equations, 33:3 (2008), 267–297  crossref  mathscinet  zmath  isi  scopus
    6. Braides A., Cicalese M., “Surface energies in nonconvex discrete systems”, Math. Models Methods Appl. Sci., 17:7 (2007), 985–1037  crossref  mathscinet  zmath  isi  scopus
    7. Blanc X., Le Bris C., Lions P.-L., “Atomistic to continuum limits for computational materials science”, M2AN Math. Model. Numer. Anal., 41:2 (2007), 391–426  crossref  mathscinet  zmath  isi  scopus
    8. Alicandro R., Braides A., Cicalese M., “Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint”, Netw. Heterog. Media, 1:1 (2006), 85–107  crossref  mathscinet  zmath  isi
    9. Alicandro R., Cicalese M., “A general integral representation result for continuum limits of discrete energies with superlinear growth”, SIAM J. Math. Anal., 36:1 (2004), 1–37  crossref  mathscinet  zmath  isi  scopus
    10. Braides A., Gelli M.S., “The passage from discrete to continuous variational problems: A nonlinear homogenization process - Continuum limits with bulk and surface energies”, Nonlinear Homogenization and its Applications to Composites, Polycrystals and Smart Materials, NATO Science Series, Series II: Mathematics, Physics and Chemistry, 170, 2004, 45–63  crossref  mathscinet  isi
    11. Paroni R., “From discrete to continuum: A Young measure approach”, Z. Angew. Math. Phys., 54:2 (2003), 328–348  crossref  mathscinet  zmath  adsnasa  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:377
    Full-text PDF :139
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025