Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2005, Volume 250, Pages 64–78 (Mi tm31)  

This article is cited in 6 scientific papers (total in 6 papers)

Robot Motion Planning: A Wild Case

J.-P. Gauthiera, V. M. Zakalyukinb

a Université de Bourgogne
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (248 kB) Citations (6)
References:
Abstract: A basic problem in robotics is a constructive motion planning problem: given an arbitrary (nonadmissible) trajectory $\Gamma$ of a robot, find an admissible $\varepsilon$-approximation (in the sub-Riemannian (SR) sense) $\gamma(\varepsilon)$ of $\Gamma$ that has the minimal sub-Riemannian length. Then, the (asymptotic behavior of the) sub-Riemannian length $L(\gamma (\varepsilon))$ is called the metric complexity of $\Gamma$ (in the sense of Jean). We have solved this problem in the case of an SR metric of corank 3 at most. For coranks greater than 3, the problem becomes much more complicated. The first really critical case is the 4–10 case (a four-dimensional distribution in $\mathbb {R}^{10}$. Here, we address this critical case. We give partial but constructive results that generalize, in a sense, the results of our previous papers.
Received in February 2005
Bibliographic databases:
UDC: 517.977.1
Language: Russian
Citation: J.-P. Gauthier, V. M. Zakalyukin, “Robot Motion Planning: A Wild Case”, Differential equations and dynamical systems, Collected papers, Trudy Mat. Inst. Steklova, 250, Nauka, MAIK «Nauka/Inteperiodika», M., 2005, 64–78; Proc. Steklov Inst. Math., 250 (2005), 56–69
Citation in format AMSBIB
\Bibitem{GauZak05}
\by J.-P.~Gauthier, V.~M.~Zakalyukin
\paper Robot Motion Planning: A~Wild Case
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2005
\vol 250
\pages 64--78
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm31}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2200908}
\zmath{https://zbmath.org/?q=an:1138.70316}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2005
\vol 250
\pages 56--69
Linking options:
  • https://www.mathnet.ru/eng/tm31
  • https://www.mathnet.ru/eng/tm/v250/p64
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:580
    Full-text PDF :161
    References:83
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024