Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2010, Volume 270, Pages 249–265 (Mi tm3027)  

This article is cited in 15 scientific papers (total in 15 papers)

Time-dependent Schrödinger equation: Statistics of the distribution of Gaussian packets on a metric graph

V. L. Chernyshevab

a Moscow State University, Moscow, Russia
b Bauman Moscow State Technical University, Moscow, Russia
References:
Abstract: We consider a time-dependent Schrödinger equation in which the spatial variable runs over a metric graph. The boundary conditions at the vertices of the graph imply the continuity of the function and the zero sum of the one-sided derivatives taken with some weights. In the semiclassical approximation, we describe a propagation of Gaussian packets on the graph that are localized at a point at the initial instant of time. The main focus is placed on the statistics of the behavior of asymptotic solutions as time increases. We show that the calculation of the number of quantum packets on a graph is related to the well-known number-theoretic problem of finding the number of integer points in an expanding simplex. We prove that the number of Gaussian packets on a finite compact graph grows polynomially. Several examples are considered. In a particular case, Gaussian packets are shown to be distributed on a graph uniformly with respect to the edge travel times.
Received in April 2009
English version:
Proceedings of the Steklov Institute of Mathematics, 2010, Volume 270, Pages 246–262
DOI: https://doi.org/10.1134/S008154381003020X
Bibliographic databases:
Document Type: Article
UDC: 517.958+517.938
Language: Russian
Citation: V. L. Chernyshev, “Time-dependent Schrödinger equation: Statistics of the distribution of Gaussian packets on a metric graph”, Differential equations and dynamical systems, Collected papers, Trudy Mat. Inst. Steklova, 270, MAIK Nauka/Interperiodica, Moscow, 2010, 249–265; Proc. Steklov Inst. Math., 270 (2010), 246–262
Citation in format AMSBIB
\Bibitem{Che10}
\by V.~L.~Chernyshev
\paper Time-dependent Schr\"odinger equation: Statistics of the distribution of Gaussian packets on a~metric graph
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 270
\pages 249--265
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3027}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2768952}
\zmath{https://zbmath.org/?q=an:1214.81074}
\elib{https://elibrary.ru/item.asp?id=15249765}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 270
\pages 246--262
\crossref{https://doi.org/10.1134/S008154381003020X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282431700020}
\elib{https://elibrary.ru/item.asp?id=16981207}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957335831}
Linking options:
  • https://www.mathnet.ru/eng/tm3027
  • https://www.mathnet.ru/eng/tm/v270/p249
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:1614
    Full-text PDF :518
    References:95
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024