Abstract:
Given a compact manifold $M$ and a family of vector fields $\mathcal F$ such that the group generated by $\mathcal F$ acts transitively on $M$, we prove that the group of all diffeomorphisms of $M$ that are isotopic to the identity is generated by the exponentials of vector fields in $\mathcal F$ rescaled by smooth functions.
Citation:
Marco Caponigro, “Families of vector fields which generate the group of diffeomorphisms”, Differential equations and dynamical systems, Collected papers, Trudy Mat. Inst. Steklova, 270, MAIK Nauka/Interperiodica, Moscow, 2010, 147–160; Proc. Steklov Inst. Math., 270 (2010), 141–155
\Bibitem{Cap10}
\by Marco~Caponigro
\paper Families of vector fields which generate the group of diffeomorphisms
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 270
\pages 147--160
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3023}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2768942}
\zmath{https://zbmath.org/?q=an:1213.58006}
\elib{https://elibrary.ru/item.asp?id=15249755}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 270
\pages 141--155
\crossref{https://doi.org/10.1134/S0081543810030107}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282431700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957329420}
Linking options:
https://www.mathnet.ru/eng/tm3023
https://www.mathnet.ru/eng/tm/v270/p147
This publication is cited in the following 2 articles:
A. Scagliotti, S. Farinelli, “Normalizing flows as approximations of optimal transport maps via linear-control neural ODEs”, Nonlinear Analysis, 257 (2025), 113811
Marco Caponigro, “Orientation preserving diffeomorphisms and flows of control-affine systems”, IFAC Proceedings Volumes, 44:1 (2011), 8016