Abstract:
We strengthen the known Agmon–Jensen–Kato decay of the resolvent for a special case of the Schrödinger equation in arbitrary dimension n⩾1. The decay is of crucial importance in applications to linear and nonlinear hyperbolic PDEs.
\Bibitem{Kop10}
\by E.~A.~Kopylova
\paper On decay of the Schr\"odinger resolvent
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 270
\pages 170--176
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3018}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2768944}
\zmath{https://zbmath.org/?q=an:1210.35042}
\elib{https://elibrary.ru/item.asp?id=15249757}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 270
\pages 165--171
\crossref{https://doi.org/10.1134/S0081543810030120}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282431700012}
\elib{https://elibrary.ru/item.asp?id=16977266}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957357586}
Linking options:
https://www.mathnet.ru/eng/tm3018
https://www.mathnet.ru/eng/tm/v270/p170
This publication is cited in the following 1 articles:
Mochizuki K., Murai S., “Smoothing and Strichartz Estimates For Perturbed Schrodinger, Klein-Gordon and Wave Equations in Exterior Domain”, Funkc. Ekvacioj-Ser. Int., 63:2 (2020), 199–230