Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2002, Volume 236, Pages 226–229 (Mi tm293)  

This article is cited in 2 scientific papers (total in 2 papers)

Suboptimal Regimes in the Fuller Problem

O. E. Maikova

Faculty of Materials Science, MSU
Full-text PDF (122 kB) Citations (2)
References:
Abstract: In certain optimal control problems, the optimization of a functional requires an infinite number of control switchings on a finite time interval. For such problems, a (suboptimal) control with a finite number of switchings is sought that possesses the following property: If, starting from a certain time moment, the optimal control is replaced by the suboptimal, then the loss in the value of the functional to be minimized is no greater than a given ε>0. The analysis is performed on the basis of the Fuller problem T0x2(t)dtmin, where ˙x=y, ˙y=u, and |u|; as a suboptimal control, we take the optimal control from the time-optimal problem on the trajectories of the same system.
Received in December 2000
Bibliographic databases:
UDC: 517.977
Language: Russian
Citation: O. E. Maikova, “Suboptimal Regimes in the Fuller Problem”, Differential equations and dynamical systems, Collected papers. Dedicated to the 80th anniversary of academician Evgenii Frolovich Mishchenko, Trudy Mat. Inst. Steklova, 236, Nauka, MAIK «Nauka/Inteperiodika», M., 2002, 226–229; Proc. Steklov Inst. Math., 236 (2002), 214–217
Citation in format AMSBIB
\Bibitem{Mai02}
\by O.~E.~Maikova
\paper Suboptimal Regimes in the Fuller Problem
\inbook Differential equations and dynamical systems
\bookinfo Collected papers. Dedicated to the 80th anniversary of academician Evgenii Frolovich Mishchenko
\serial Trudy Mat. Inst. Steklova
\yr 2002
\vol 236
\pages 226--229
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm293}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1931023}
\zmath{https://zbmath.org/?q=an:1026.49015}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2002
\vol 236
\pages 214--217
Linking options:
  • https://www.mathnet.ru/eng/tm293
  • https://www.mathnet.ru/eng/tm/v236/p226
  • This publication is cited in the following 2 articles:
    1. Kostoglotov A.A., Lazarenko V S., “Method of Quasi-Optimal Synthesis of Control Laws Based on the Reduction of the Lagrange Problem to the Isoperimetric Problem Using Asynchronous Variation”, J. Comput. Syst. Sci. Int., 60:6 (2021), 843–852  crossref  isi
    2. V. V. Vasin, T. I. Serezhnikova, “Two-stage approximation of nonsmooth solutions and restoration of noised images”, Autom. Remote Control, 65:2 (2004), 270–279  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:479
    Full-text PDF :234
    References:84
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025