Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2010, Volume 268, Pages 64–75 (Mi tm2876)  

This article is cited in 10 scientific papers (total in 10 papers)

The Pontryagin maximum principle and a unified theory of dynamic optimization

F. Clarke

CNRS, UMR 5208, Institut Camille Jordan, Université Claude Bernard Lyon 1, Villeurbanne, France
References:
Abstract: The Pontryagin maximum principle is the central result of optimal control theory. In the half-century since its appearance, the underlying theorem has been generalized, strengthened, extended, proved and reinterpreted in a variety of ways. We review in this article one of the principal approaches to obtaining the maximum principle in a powerful and unified context, focusing upon recent results that represent the culmination of over thirty years of progress using the methodology of nonsmooth analysis. We illustrate the novel features of this theory, as well as its versatility, by introducing a far-reaching new theorem that bears upon the currently active subject of mixed constraints in optimal control.
Received in April 2009
English version:
Proceedings of the Steklov Institute of Mathematics, 2010, Volume 268, Pages 58–69
DOI: https://doi.org/10.1134/S0081543810010062
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: English
Citation: F. Clarke, “The Pontryagin maximum principle and a unified theory of dynamic optimization”, Differential equations and topology. I, Collected papers. In commemoration of the centenary of the birth of Academician Lev Semenovich Pontryagin, Trudy Mat. Inst. Steklova, 268, MAIK Nauka/Interperiodica, Moscow, 2010, 64–75; Proc. Steklov Inst. Math., 268 (2010), 58–69
Citation in format AMSBIB
\Bibitem{Cla10}
\by F.~Clarke
\paper The Pontryagin maximum principle and a~unified theory of dynamic optimization
\inbook Differential equations and topology.~I
\bookinfo Collected papers. In commemoration of the centenary of the birth of Academician Lev Semenovich Pontryagin
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 268
\pages 64--75
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm2876}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2724335}
\zmath{https://zbmath.org/?q=an:1201.49002}
\elib{https://elibrary.ru/item.asp?id=13726635}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 268
\pages 58--69
\crossref{https://doi.org/10.1134/S0081543810010062}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000277345600006}
\elib{https://elibrary.ru/item.asp?id=15374412}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952271185}
Linking options:
  • https://www.mathnet.ru/eng/tm2876
  • https://www.mathnet.ru/eng/tm/v268/p64
  • This publication is cited in the following 10 articles:
    1. Alberto Landi, Giulio Pisaneschi, Marco Laurino, Piero Manfredi, “Optimal social distancing in pandemic preparedness and lessons from COVID-19: Intervention intensity and infective travelers”, Journal of Theoretical Biology, 2025, 112072  crossref
    2. Joydeb Bhattacharyya, Soumitro Banerjee, “Modelling the efficacy of Wolbachia-based mosquito control: a population replacement approach”, Eur. Phys. J. Plus, 139:6 (2024)  crossref
    3. S. M. Aseev, “Necessary conditions for the optimality and sustainability of solutions in infinite-horizon optimal control problems”, Mathematics, 11:18 (2023), 3851  mathnet  crossref  isi
    4. Danylo Malyuta, Taylor P. Reynolds, Michael Szmuk, Thomas Lew, Riccardo Bonalli, Marco Pavone, Behçet Aç{\i}kmeşe, “Convex Optimization for Trajectory Generation: A Tutorial on Generating Dynamically Feasible Trajectories Reliably and Efficiently”, IEEE Control Syst., 42:5 (2022), 40  crossref
    5. Oswaldo Andrés‐Martínez, Oscar Palma‐Flores, Luis A. Ricardez‐Sandoval, “Optimal control and the Pontryagin's principle in chemical engineering: History, theory, and challenges”, AIChE Journal, 68:8 (2022)  crossref
    6. Ceschia A., Azib T., Bethoux O., Alves F., “Optimal Design Methodology For Sizing a Fuel Cell/Battery Hybrid Power Source”, Proc. Inst. Mech. Eng. Part A-J. Power Energy, 235:1 (2021), UNSP 0957650920910346, 3–16  crossref  isi
    7. Malyuta D., Acikmese B., “Lossless Convexification of Optimal Control Problems With Semi-Continuous Inputs”, IFAC PAPERSONLINE, 53:2 (2020), 6843–6850  crossref  isi
    8. Ceschia A., Azib T., Bethoux O., Alves F., “Sensitivity Analysis of An Optimal Design Methodology For Hybrid Power System”, 2019 6Th International Conference on Control, Decision and Information Technologies (Codit 2019), International Conference on Control Decision and Information Technologies, IEEE, 2019, 1277–1282  isi
    9. Adriano Ceschia, Toufik Azib, Olivier Bethoux, Francisco Alves, 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), 2019, 1277  crossref
    10. Sun B., “Optimal Control Problem With Unilateral Constraints For Longitudinal Vibration of a Viscoelastic Valve”, IMA J. Math. Control Inf., 34:2 (2017), 697–715  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:447
    Full-text PDF :184
    References:92
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025