Abstract:
The Pontryagin maximum principle is the central result of optimal control theory. In the half-century since its appearance, the underlying theorem has been generalized, strengthened, extended, proved and reinterpreted in a variety of ways. We review in this article one of the principal approaches to obtaining the maximum principle in a powerful and unified context, focusing upon recent results that represent the culmination of over thirty years of progress using the methodology of nonsmooth analysis. We illustrate the novel features of this theory, as well as its versatility, by introducing a far-reaching new theorem that bears upon the currently active subject of mixed constraints in optimal control.
Citation:
F. Clarke, “The Pontryagin maximum principle and a unified theory of dynamic optimization”, Differential equations and topology. I, Collected papers. In commemoration of the centenary of the birth of Academician Lev Semenovich Pontryagin, Trudy Mat. Inst. Steklova, 268, MAIK Nauka/Interperiodica, Moscow, 2010, 64–75; Proc. Steklov Inst. Math., 268 (2010), 58–69
\Bibitem{Cla10}
\by F.~Clarke
\paper The Pontryagin maximum principle and a~unified theory of dynamic optimization
\inbook Differential equations and topology.~I
\bookinfo Collected papers. In commemoration of the centenary of the birth of Academician Lev Semenovich Pontryagin
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 268
\pages 64--75
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm2876}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2724335}
\zmath{https://zbmath.org/?q=an:1201.49002}
\elib{https://elibrary.ru/item.asp?id=13726635}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 268
\pages 58--69
\crossref{https://doi.org/10.1134/S0081543810010062}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000277345600006}
\elib{https://elibrary.ru/item.asp?id=15374412}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952271185}
Linking options:
https://www.mathnet.ru/eng/tm2876
https://www.mathnet.ru/eng/tm/v268/p64
This publication is cited in the following 10 articles:
Alberto Landi, Giulio Pisaneschi, Marco Laurino, Piero Manfredi, “Optimal social distancing in pandemic preparedness and lessons from COVID-19: Intervention intensity and infective travelers”, Journal of Theoretical Biology, 2025, 112072
Joydeb Bhattacharyya, Soumitro Banerjee, “Modelling the efficacy of Wolbachia-based mosquito control: a population replacement approach”, Eur. Phys. J. Plus, 139:6 (2024)
S. M. Aseev, “Necessary conditions for the optimality and sustainability of solutions in infinite-horizon optimal control problems”, Mathematics, 11:18 (2023), 3851
Danylo Malyuta, Taylor P. Reynolds, Michael Szmuk, Thomas Lew, Riccardo Bonalli, Marco Pavone, Behçet Aç{\i}kmeşe, “Convex Optimization for Trajectory Generation: A Tutorial on Generating Dynamically Feasible Trajectories Reliably and Efficiently”, IEEE Control Syst., 42:5 (2022), 40
Oswaldo Andrés‐Martínez, Oscar Palma‐Flores, Luis A. Ricardez‐Sandoval, “Optimal control and the Pontryagin's principle in chemical engineering: History, theory, and challenges”, AIChE Journal, 68:8 (2022)
Ceschia A., Azib T., Bethoux O., Alves F., “Optimal Design Methodology For Sizing a Fuel Cell/Battery Hybrid Power Source”, Proc. Inst. Mech. Eng. Part A-J. Power Energy, 235:1 (2021), UNSP 0957650920910346, 3–16
Malyuta D., Acikmese B., “Lossless Convexification of Optimal Control Problems With Semi-Continuous Inputs”, IFAC PAPERSONLINE, 53:2 (2020), 6843–6850
Ceschia A., Azib T., Bethoux O., Alves F., “Sensitivity Analysis of An Optimal Design Methodology For Hybrid Power System”, 2019 6Th International Conference on Control, Decision and Information Technologies (Codit 2019), International Conference on Control Decision and Information Technologies, IEEE, 2019, 1277–1282
Adriano Ceschia, Toufik Azib, Olivier Bethoux, Francisco Alves, 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), 2019, 1277
Sun B., “Optimal Control Problem With Unilateral Constraints For Longitudinal Vibration of a Viscoelastic Valve”, IMA J. Math. Control Inf., 34:2 (2017), 697–715