Abstract:
This paper is a study of singularities of geodesic flows on surfaces with nonisolated singular points that form a smooth curve (like a cuspidal edge). The main results of the paper are normal forms of the corresponding direction field on the tangent bundle of the plane of local coordinates and the projection of its trajectories to the surface.
Citation:
A. O. Remizov, “Singularities of a geodesic flow on surfaces with a cuspidal edge”, Differential equations and topology. I, Collected papers. In commemoration of the centenary of the birth of Academician Lev Semenovich Pontryagin, Trudy Mat. Inst. Steklova, 268, MAIK Nauka/Interperiodica, Moscow, 2010, 258–267; Proc. Steklov Inst. Math., 268 (2010), 248–257
\Bibitem{Rem10}
\by A.~O.~Remizov
\paper Singularities of a~geodesic flow on surfaces with a~cuspidal edge
\inbook Differential equations and topology.~I
\bookinfo Collected papers. In commemoration of the centenary of the birth of Academician Lev Semenovich Pontryagin
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 268
\pages 258--267
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm2868}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2724346}
\zmath{https://zbmath.org/?q=an:1200.58026}
\elib{https://elibrary.ru/item.asp?id=13726651}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 268
\pages 248--257
\crossref{https://doi.org/10.1134/S0081543810010177}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000277345600017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952277799}
Linking options:
https://www.mathnet.ru/eng/tm2868
https://www.mathnet.ru/eng/tm/v268/p258
This publication is cited in the following 7 articles:
Masatomo Takahashi, “On geodesics of framed surfaces in the Euclidean 3-space”, Tohoku Math. J. (2), 76:2 (2024)
Honda A., Naokawa K., Umehara M., Yamada K., “Isometric Deformations of Wave Fronts At Non-Degenerate Singular Points”, Hiroshima Math. J., 50:3 (2020), 269–312
N. G. Pavlova, A. O. Remizov, “Completion of the classification of generic singularities of geodesic
flows in two classes of metrics”, Izv. Math., 83:1 (2019), 104–123
Ortiz-Bobadilla L., Rosales-Gonzalez E., Voronin S.M., “Analytic Classification of Foliations Induced By Germs of Holomorphic Vector Fields in (C-N,0) With Non-Isolated Singularities”, J. Dyn. Control Syst., 25:3 (2019), 491–516
M. A. Davydova, N. T. Levashova, S. A. Zakharova, “Asimptoticheskii analiz v zadache modelirovaniya protsessa perenosa gazovoi primesi v pripoverkhnostnom sloe atmosfery”, Model. i analiz inform. sistem, 23:3 (2016), 283–290
Ghezzi R., Remizov A.O., “On a Class of Vector Fields with Discontinuities of Divide-by-Zero Type and its Applications to Geodesics in Singular Metrics”, J. Dyn. Control Syst., 18:1 (2012), 135–158
N. G. Pavlova, A. O. Remizov, “Geodesics on hypersurfaces in Minkowski space: singularities of signature change”, Russian Math. Surveys, 66:6 (2011), 1201–1203