Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2002, Volume 236, Pages 103–119 (Mi tm281)  

This article is cited in 2 scientific papers (total in 2 papers)

Homoclinic Tangencies, $\Omega$-Moduli, and Bifurcations

V. S. Gonchenko

Research Institute for Applied Mathematics and Cybernetics, N. I. Lobachevski State University of Nizhnii Novgorod
Full-text PDF (283 kB) Citations (2)
References:
Abstract: A survey of author's results related to the problems of existence of continuous invariants (moduli) of $\Omega$-conjugacy of multidimensional diffeomorphisms with homoclinic tangencies is presented. The problem of bifurcations of periodic orbits is considered in the case of four-dimensional diffeomorphisms with a nontransversal homoclinic orbit to a fixed point of saddle–focus type.
Received in February 2001
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: V. S. Gonchenko, “Homoclinic Tangencies, $\Omega$-Moduli, and Bifurcations”, Differential equations and dynamical systems, Collected papers. Dedicated to the 80th anniversary of academician Evgenii Frolovich Mishchenko, Trudy Mat. Inst. Steklova, 236, Nauka, MAIK «Nauka/Inteperiodika», M., 2002, 103–119; Proc. Steklov Inst. Math., 236 (2002), 94–109
Citation in format AMSBIB
\Bibitem{Gon02}
\by V.~S.~Gonchenko
\paper Homoclinic Tangencies, $\Omega$-Moduli, and Bifurcations
\inbook Differential equations and dynamical systems
\bookinfo Collected papers. Dedicated to the 80th anniversary of academician Evgenii Frolovich Mishchenko
\serial Trudy Mat. Inst. Steklova
\yr 2002
\vol 236
\pages 103--119
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm281}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1931011}
\zmath{https://zbmath.org/?q=an:1025.37012}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2002
\vol 236
\pages 94--109
Linking options:
  • https://www.mathnet.ru/eng/tm281
  • https://www.mathnet.ru/eng/tm/v236/p103
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025