Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2002, Volume 236, Pages 66–78 (Mi tm277)  

This article is cited in 10 scientific papers (total in 10 papers)

On Morse–Smale Diffeomorphisms without Heteroclinic Intersections on Three-Manifolds

Ch. Bonattia, V. Z. Grinesb, V. S. Medvedevc, E. Pekua

a Université de Bourgogne
b Nizhnii Novgorod State Agricultural Academy
c Research Institute for Applied Mathematics and Cybernetics, N. I. Lobachevski State University of Nizhnii Novgorod
References:
Abstract: A class of Morse–Smale diffeomorphisms is considered that do not admit heteroclinic intersections and are defined on three-manifolds. To each diffeomorphism $f$, we associate an enriched graph $G(f)$ and, for each sink $\omega$, we define a scheme $S(\omega )$ which is a link of tori, the Klein bottle, and simple closed curves embedded in $S^2\times S^1$. We show that diffeomorphisms $f_1$ and $f_2$ are topologically conjugate if and only if (1) the corresponding graphs $G(f_1)$ and $G(f_2)$ are isomorphic and the permutations induced by the dynamics $f_1$ and $f_2$ on the vertices and edges of the graphs are conjugate; (2) two sinks corresponding to isomorphic vertices have equivalent schemes; and (3) for any two saddles corresponding to isomorphic vertices and having one-dimensional unstable manifolds, the corresponding pairs of curves in $S^2\times S^1$ associated with the one-dimensional separatrices are concordantly embedded.
Received in December 2000
Bibliographic databases:
UDC: 517.917+513.83
Language: Russian
Citation: Ch. Bonatti, V. Z. Grines, V. S. Medvedev, E. Peku, “On Morse–Smale Diffeomorphisms without Heteroclinic Intersections on Three-Manifolds”, Differential equations and dynamical systems, Collected papers. Dedicated to the 80th anniversary of academician Evgenii Frolovich Mishchenko, Trudy Mat. Inst. Steklova, 236, Nauka, MAIK «Nauka/Inteperiodika», M., 2002, 66–78; Proc. Steklov Inst. Math., 236 (2002), 58–69
Citation in format AMSBIB
\Bibitem{BonGriMed02}
\by Ch.~Bonatti, V.~Z.~Grines, V.~S.~Medvedev, E.~Peku
\paper On Morse--Smale Diffeomorphisms without Heteroclinic Intersections on Three-Manifolds
\inbook Differential equations and dynamical systems
\bookinfo Collected papers. Dedicated to the 80th anniversary of academician Evgenii Frolovich Mishchenko
\serial Trudy Mat. Inst. Steklova
\yr 2002
\vol 236
\pages 66--78
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm277}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1931007}
\zmath{https://zbmath.org/?q=an:1011.37013}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2002
\vol 236
\pages 58--69
Linking options:
  • https://www.mathnet.ru/eng/tm277
  • https://www.mathnet.ru/eng/tm/v236/p66
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:363
    Full-text PDF :108
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024