Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2002, Volume 236, Pages 27–32 (Mi tm273)  

This article is cited in 4 scientific papers (total in 4 papers)

Invariant Manifolds in Singularly Perturbed Systems

O. D. Anosova

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (169 kB) Citations (4)
References:
Abstract: A singularly perturbed system is considered with a small parameter ε in the velocity of a slow variable y and with a fast variable x. It is assumed that, for any y from a certain bounded domain D, the fast subsystem has a manifold M0(y) that is compact stable invariant or overflowing (in another variant, it is hyperbolic bilaterally invariant) and that the motions in this system in the direction transverse to M0(y) are faster than the mutual approaching of trajectories on M0(y) (the precise formulation is given in terms of the generalized Lyapunov characteristic numbers). It is proved that, for sufficiently small ε, the full system has an invariant manifold close to yDM0(y)×{y}; its degree of smoothness is refined. In the stable case, this manifold attracts close trajectories. In the hyperbolic case, the behavior of trajectories near this manifold is hyperbolic (in the direction transverse to the manifold).
Received in October 2000
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: O. D. Anosova, “Invariant Manifolds in Singularly Perturbed Systems”, Differential equations and dynamical systems, Collected papers. Dedicated to the 80th anniversary of academician Evgenii Frolovich Mishchenko, Trudy Mat. Inst. Steklova, 236, Nauka, MAIK «Nauka/Inteperiodika», M., 2002, 27–32; Proc. Steklov Inst. Math., 236 (2002), 19–24
Citation in format AMSBIB
\Bibitem{Ano02}
\by O.~D.~Anosova
\paper Invariant Manifolds in Singularly Perturbed Systems
\inbook Differential equations and dynamical systems
\bookinfo Collected papers. Dedicated to the 80th anniversary of academician Evgenii Frolovich Mishchenko
\serial Trudy Mat. Inst. Steklova
\yr 2002
\vol 236
\pages 27--32
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm273}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1931003}
\zmath{https://zbmath.org/?q=an:1036.34055}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2002
\vol 236
\pages 19--24
Linking options:
  • https://www.mathnet.ru/eng/tm273
  • https://www.mathnet.ru/eng/tm/v236/p27
  • This publication is cited in the following 4 articles:
    1. P. I. Kaleda, “Singular systems on the plane and in space”, J. Math. Sci. (N. Y.), 179:4 (2011), 475–490  mathnet  crossref  zmath  elib
    2. Schurov I.V., “Ducks on the torus: existence and uniqueness”, J Dynam Control Systems, 16:2 (2010), 267–300  crossref  mathscinet  zmath  isi  elib  scopus
    3. O. D. Anosova, “Invariant manifolds and dynamic bifurcations”, Russian Math. Surveys, 60:1 (2005), 151–153  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. Ilyashenko Y., “Selected topics in differential equations with real and complex time”, Normal Forms, Bifurcations and Finiteness Problems in Differential Equations, NATO Science Series, Series II: Mathematics, Physics and Chemistry, 137, 2004, 317–354  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:499
    Full-text PDF :168
    References:91
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025