Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2006, Volume 255, Pages 197–215 (Mi tm263)  

This article is cited in 20 scientific papers (total in 20 papers)

Nikol'skii's Inequality for Different Metrics and Properties of the Sequence of Norms of the Fourier Sums of a Function in the Lorentz Space

E. D. Nursultanov

Kazakhstan Branch of Lomonosov Moscow State University
References:
Abstract: Let (X,Y)(X,Y) be a pair of normed spaces such that XYL1[0,1]nXYL1[0,1]n and {ek}k{ek}k be an expanding sequence of finite sets in Zn with respect to a scalar or vector parameter kkN or kNn. The properties of the sequence of norms {Sek(f)X}k of the Fourier sums of a fixed function fY are studied. As the spaces X and Y, the Lebesgue spaces Lp[0,1], the Lorentz spaces Lp,q[0,1], Lp,q[0,1]n, and the anisotropic Lorentz spaces Lp,q[0,1]n are considered. In the one-dimensional case, the sequence {ek}k consists of segments, and in the multidimensional case, it is a sequence of hyperbolic crosses or parallelepipeds in Zn. For trigonometric polynomials with the spectrum given by step hyperbolic crosses and parallelepipeds, various types of inequalities for different metrics in the Lorentz spaces Lp,q[0,1]n and Lp,q[0,1]n are obtained.
Received in May 2005
English version:
Proceedings of the Steklov Institute of Mathematics, 2006, Volume 255, Pages 185–202
DOI: https://doi.org/10.1134/S0081543806040158
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: E. D. Nursultanov, “Nikol'skii's Inequality for Different Metrics and Properties of the Sequence of Norms of the Fourier Sums of a Function in the Lorentz Space”, Function spaces, approximation theory, and nonlinear analysis, Collected papers, Trudy Mat. Inst. Steklova, 255, Nauka, MAIK «Nauka/Inteperiodika», M., 2006, 197–215; Proc. Steklov Inst. Math., 255 (2006), 185–202
Citation in format AMSBIB
\Bibitem{Nur06}
\by E.~D.~Nursultanov
\paper Nikol'skii's Inequality for Different Metrics and Properties of the Sequence of Norms of the Fourier Sums of a Function in the Lorentz Space
\inbook Function spaces, approximation theory, and nonlinear analysis
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2006
\vol 255
\pages 197--215
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm263}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2301619}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2006
\vol 255
\pages 185--202
\crossref{https://doi.org/10.1134/S0081543806040158}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846860594}
Linking options:
  • https://www.mathnet.ru/eng/tm263
  • https://www.mathnet.ru/eng/tm/v255/p197
  • This publication is cited in the following 20 articles:
    1. N. T. Tleukhanova, A. N. Bashirova, “On Multipliers of Fourier Series in the Haar System”, Math. Notes, 109:6 (2021), 940–947  mathnet  crossref  crossref  isi  elib
    2. Bashirova A.N., Nursultanov E.D., “On the Inequality of Different Metrics For Multiple Fourier-Haar Series”, Eurasian Math. J., 12:3 (2021), 90–93  mathnet  crossref  mathscinet  isi
    3. Tleukhanova N.T. Nursultanov E.D. Bashirova A.N., “Multipliers of Double Fourier-Haar Series”, Adv. Oper. Theory, 6:3 (2021), 58  crossref  mathscinet  isi
    4. Gabdolla AKİSHEV, Lars Erik PERSSON, Harpal SİNGH, “Some New Fourier and Jackson-Nikol'skii Type Inequalities In Unbounded Orthonormal Systems”, Constructive Mathematical Analysis, 4:3 (2021), 291  crossref
    5. Gabdolla Akishev, “Estimates of best approximations of functions with logarithmic smoothness in the Lorentz space with anisotropic norm”, Ural Math. J., 6:1 (2020), 16–29  mathnet  crossref  mathscinet  zmath
    6. Bekmaganbetov K.A. Toleugazy Y., “On the Order of the Trigonometric Diameter of the Anisotropic Nikol'Skii-Besov Class in the Metric of Anisotropic Lorentz Spaces”, Anal. Math., 45:2 (2019), 237–247  crossref  mathscinet  isi  scopus
    7. Yessenbayeva G.A., Yesbayev A.N., Poppell H., “On the Inequality of Different Metrics For Trigonometric Polynomials”, Bull. Karaganda Univ-Math., 93:1 (2019), 102–107  crossref  isi
    8. Akishev G., “An Inequality of Different Metrics in the Generalized Lorentz Space”, Tr. Inst. Mat. Mekhaniki URO RAN, 24:4 (2018), 5–18  crossref  mathscinet  isi
    9. Akishev G., “Estimations of the Best M - Term Approximations of Functions in the Lorentz Space With Constructive Methods”, Bull. Karaganda Univ-Math., 87:3 (2017), 13–26  crossref  mathscinet  isi
    10. Ydyrys A. Sarybekova L. Tleukhanova N., “The multipliers of multiple trigonometric Fourier series”, Open Eng., 6:1 (2016), 367–371  crossref  isi  elib  scopus
    11. Nursultanov E., Ruzhansky M., Tikhonov S., “Nikolskii Inequality and Besov, Triebel-Lizorkin, Wiener and Beurling Spaces on Compact Homogeneous Manifolds”, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 16:3 (2016), 981–1017  mathscinet  zmath  isi
    12. K. A. Bekmaganbetov, Applied and Numerical Harmonic Analysis, Methods of Fourier Analysis and Approximation Theory, 2016, 149  crossref
    13. G. A. Akishev, “On approximation orders of functions of several variables in the Lorentz space”, Proc. Steklov Inst. Math. (Suppl.), 300:1 (2018), 9–24  mathnet  mathnet  crossref  crossref  isi  scopus
    14. G. A. Akishev, “Estimates for Kolmogorov widths of the Nikol'skii — Besov — Amanov classes in the Lorentz space”, Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 1–12  mathnet  crossref  mathscinet  isi  elib
    15. Lars-Erik Persson, Lyazzat Sarybekova, Nazerke Tleukhanova, Springer Proceedings in Mathematics, 6, Analysis for Science, Engineering and Beyond, 2012, 305  crossref
    16. M. I. Dyachenko, “Local smoothness of the conjugate functions”, Eurasian Math. J., 2:2 (2011), 31–59  mathnet  mathscinet  zmath
    17. Nursultanov E., Tikhonov S., “Net spaces and boundedness of integral operators”, J. Geom. Anal., 21:4 (2011), 950–981  crossref  mathscinet  zmath  isi  elib  scopus
    18. Sarybekova L.O., Tararykova T.V., Tleukhanova N.T., “On a generalization of the Lizorkin theorem on Fourier multipliers”, Math. Inequal. Appl., 13:3 (2010), 613–624  mathscinet  zmath  isi  elib
    19. K. A. Bekmaganbetov, E. D. Nursultanov, “Embedding theorems for anisotropic Besov spaces $B_{\mathbf{pr}}^{\alpha\mathbf{q}}([0,2\pi)^n)$”, Izv. Math., 73:4 (2009), 655–668  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    20. G. A. Akishev, “O poryadkakh priblizheniya klassov v prostranstvakh Lorentsa”, Sib. elektron. matem. izv., 5 (2008), 51–67  mathnet  mathscinet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:693
    Full-text PDF :262
    References:90
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025