Abstract:
Let (X,Y)(X,Y) be a pair of normed spaces such that X⊂Y⊂L1[0,1]nX⊂Y⊂L1[0,1]n and {ek}k{ek}k be an expanding sequence of finite sets in Zn with respect to a scalar or vector parameter k, k∈N or k∈Nn. The properties of the sequence of norms {‖Sek(f)‖X}k of the Fourier sums of a fixed function f∈Y are studied. As the spaces X and Y, the Lebesgue spaces Lp[0,1], the Lorentz spaces Lp,q[0,1], Lp,q[0,1]n, and the anisotropic Lorentz spaces Lp,q⋆[0,1]n are considered. In the one-dimensional case, the sequence {ek}k consists of segments, and in the multidimensional case, it is a sequence of hyperbolic crosses or parallelepipeds in Zn. For trigonometric polynomials with the spectrum given by step hyperbolic crosses and parallelepipeds, various types of inequalities for different metrics in the Lorentz spaces Lp,q[0,1]n and Lp,q⋆[0,1]n are obtained.
Citation:
E. D. Nursultanov, “Nikol'skii's Inequality for Different Metrics and Properties of the Sequence of Norms of the Fourier Sums of a Function in the Lorentz Space”, Function spaces, approximation theory, and nonlinear analysis, Collected papers, Trudy Mat. Inst. Steklova, 255, Nauka, MAIK «Nauka/Inteperiodika», M., 2006, 197–215; Proc. Steklov Inst. Math., 255 (2006), 185–202
\Bibitem{Nur06}
\by E.~D.~Nursultanov
\paper Nikol'skii's Inequality for Different Metrics and Properties of the Sequence of Norms of the Fourier Sums of a Function in the Lorentz Space
\inbook Function spaces, approximation theory, and nonlinear analysis
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2006
\vol 255
\pages 197--215
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm263}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2301619}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2006
\vol 255
\pages 185--202
\crossref{https://doi.org/10.1134/S0081543806040158}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846860594}
Linking options:
https://www.mathnet.ru/eng/tm263
https://www.mathnet.ru/eng/tm/v255/p197
This publication is cited in the following 20 articles:
N. T. Tleukhanova, A. N. Bashirova, “On Multipliers of Fourier Series in the Haar System”, Math. Notes, 109:6 (2021), 940–947
Bashirova A.N., Nursultanov E.D., “On the Inequality of Different Metrics For Multiple Fourier-Haar Series”, Eurasian Math. J., 12:3 (2021), 90–93
Gabdolla AKİSHEV, Lars Erik PERSSON, Harpal SİNGH, “Some New Fourier and Jackson-Nikol'skii Type Inequalities In Unbounded Orthonormal Systems”, Constructive Mathematical Analysis, 4:3 (2021), 291
Gabdolla Akishev, “Estimates of best approximations of functions with logarithmic smoothness in the Lorentz space with anisotropic norm”, Ural Math. J., 6:1 (2020), 16–29
Bekmaganbetov K.A. Toleugazy Y., “On the Order of the Trigonometric Diameter of the Anisotropic Nikol'Skii-Besov Class in the Metric of Anisotropic Lorentz Spaces”, Anal. Math., 45:2 (2019), 237–247
Yessenbayeva G.A., Yesbayev A.N., Poppell H., “On the Inequality of Different Metrics For Trigonometric Polynomials”, Bull. Karaganda Univ-Math., 93:1 (2019), 102–107
Akishev G., “An Inequality of Different Metrics in the Generalized Lorentz Space”, Tr. Inst. Mat. Mekhaniki URO RAN, 24:4 (2018), 5–18
Akishev G., “Estimations of the Best M - Term Approximations of Functions in the Lorentz Space With Constructive Methods”, Bull. Karaganda Univ-Math., 87:3 (2017), 13–26
Ydyrys A. Sarybekova L. Tleukhanova N., “The multipliers of multiple trigonometric Fourier series”, Open Eng., 6:1 (2016), 367–371
Nursultanov E., Ruzhansky M., Tikhonov S., “Nikolskii Inequality and Besov, Triebel-Lizorkin, Wiener and Beurling Spaces on Compact Homogeneous Manifolds”, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 16:3 (2016), 981–1017
K. A. Bekmaganbetov, Applied and Numerical Harmonic Analysis, Methods of Fourier Analysis and Approximation Theory, 2016, 149
G. A. Akishev, “On approximation orders of functions of several variables in the Lorentz space”, Proc. Steklov Inst. Math. (Suppl.), 300:1 (2018), 9–24
G. A. Akishev, “Estimates for Kolmogorov widths of the Nikol'skii — Besov — Amanov classes in the Lorentz space”, Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 1–12
Lars-Erik Persson, Lyazzat Sarybekova, Nazerke Tleukhanova, Springer Proceedings in Mathematics, 6, Analysis for Science, Engineering and Beyond, 2012, 305
M. I. Dyachenko, “Local smoothness of the conjugate functions”, Eurasian Math. J., 2:2 (2011), 31–59
Nursultanov E., Tikhonov S., “Net spaces and boundedness of integral operators”, J. Geom. Anal., 21:4 (2011), 950–981
Sarybekova L.O., Tararykova T.V., Tleukhanova N.T., “On a generalization of the Lizorkin theorem on Fourier multipliers”, Math. Inequal. Appl., 13:3 (2010), 613–624
K. A. Bekmaganbetov, E. D. Nursultanov, “Embedding theorems for anisotropic Besov spaces $B_{\mathbf{pr}}^{\alpha\mathbf{q}}([0,2\pi)^n)$”, Izv. Math., 73:4 (2009), 655–668
G. A. Akishev, “O poryadkakh priblizheniya klassov v prostranstvakh Lorentsa”, Sib. elektron. matem. izv., 5 (2008), 51–67