Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2006, Volume 255, Pages 197–215 (Mi tm263)  

This article is cited in 20 scientific papers (total in 20 papers)

Nikol'skii's Inequality for Different Metrics and Properties of the Sequence of Norms of the Fourier Sums of a Function in the Lorentz Space

E. D. Nursultanov

Kazakhstan Branch of Lomonosov Moscow State University
References:
Abstract: Let $(X,Y)$ be a pair of normed spaces such that $X\subset Y\subset L_1[0,1]^n$ and $\{e_k\}_k$ be an expanding sequence of finite sets in $\mathbb Z^n$ with respect to a scalar or vector parameter $k$$k\in \mathbb N$ or $k\in \mathbb N^n$. The properties of the sequence of norms $\{\|S_{e_k}(f)\|_X\}_k$ of the Fourier sums of a fixed function $f\in Y$ are studied. As the spaces $X$ and $Y$, the Lebesgue spaces $L_p[0,1]$, the Lorentz spaces $L_{p,q}[0,1]$, $L_{p,q}[0,1]^n$, and the anisotropic Lorentz spaces $L_{\mathbf p,\mathbf q^\star }[0,1]^n$ are considered. In the one-dimensional case, the sequence $\{e_k\}_k$ consists of segments, and in the multidimensional case, it is a sequence of hyperbolic crosses or parallelepipeds in $\mathbb Z^n$. For trigonometric polynomials with the spectrum given by step hyperbolic crosses and parallelepipeds, various types of inequalities for different metrics in the Lorentz spaces $L_{p,q}[0,1]^n$ and $L_{\mathbf p,\mathbf q^\star }[0,1]^n$ are obtained.
Received in May 2005
English version:
Proceedings of the Steklov Institute of Mathematics, 2006, Volume 255, Pages 185–202
DOI: https://doi.org/10.1134/S0081543806040158
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: E. D. Nursultanov, “Nikol'skii's Inequality for Different Metrics and Properties of the Sequence of Norms of the Fourier Sums of a Function in the Lorentz Space”, Function spaces, approximation theory, and nonlinear analysis, Collected papers, Trudy Mat. Inst. Steklova, 255, Nauka, MAIK «Nauka/Inteperiodika», M., 2006, 197–215; Proc. Steklov Inst. Math., 255 (2006), 185–202
Citation in format AMSBIB
\Bibitem{Nur06}
\by E.~D.~Nursultanov
\paper Nikol'skii's Inequality for Different Metrics and Properties of the Sequence of Norms of the Fourier Sums of a Function in the Lorentz Space
\inbook Function spaces, approximation theory, and nonlinear analysis
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2006
\vol 255
\pages 197--215
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm263}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2301619}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2006
\vol 255
\pages 185--202
\crossref{https://doi.org/10.1134/S0081543806040158}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846860594}
Linking options:
  • https://www.mathnet.ru/eng/tm263
  • https://www.mathnet.ru/eng/tm/v255/p197
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:638
    Full-text PDF :241
    References:76
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024