Abstract:
For an integral equation describing stationary distributions of a biological community, we point out conditions on its parameters under which this equation has a unique solution that satisfies necessary requirements for such a distribution.
Citation:
A. A. Davydov, V. I. Danchenko, M. Yu. Zvyagin, “Existence and Uniqueness of a Stationary Distribution of a Biological Community”, Singularities and applications, Collected papers, Trudy Mat. Inst. Steklova, 267, MAIK Nauka/Interperiodica, Moscow, 2009, 46–55; Proc. Steklov Inst. Math., 267 (2009), 40–49
\Bibitem{DavDanZvy09}
\by A.~A.~Davydov, V.~I.~Danchenko, M.~Yu.~Zvyagin
\paper Existence and Uniqueness of a~Stationary Distribution of a~Biological Community
\inbook Singularities and applications
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2009
\vol 267
\pages 46--55
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm2604}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2723938}
\zmath{https://zbmath.org/?q=an:1231.92055}
\elib{https://elibrary.ru/item.asp?id=12989361}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2009
\vol 267
\pages 40--49
\crossref{https://doi.org/10.1134/S0081543809040038}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000274252700003}
\elib{https://elibrary.ru/item.asp?id=15320419}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76049118265}
Linking options:
https://www.mathnet.ru/eng/tm2604
https://www.mathnet.ru/eng/tm/v267/p46
This publication is cited in the following 14 articles:
A. Kh. Khachatryan, Kh. A. Khachatryan, A. S. Petrosyan, “Voprosy suschestvovaniya, otsutstviya i edinstvennosti resheniya odnogo klassa nelineinykh integralnykh uravnenii na vsei pryamoi s operatorom tipa Gammershteina — Ctiltesa”, Tr. IMM UrO RAN, 30, no. 1, 2024, 249–269
A. A. Davydov, Kh. A. Khachatryan, “Stationary States in Population Dynamics with Migration and Distributed Offspring”, J Math Sci, 2024
A. A. Davydov, Kh. A. Khachatryan, “Statsionarnye sostoyaniya v dinamike populyatsii s migratsiei i raspredelennym potomstvom”, SMFN, 69, no. 4, Rossiiskii universitet druzhby narodov, M., 2023, 578–587
Kh.A. Khachatryan, H.S. Petrosyan, A. R. Hakobyan, “On solvability of one class of integral equations on whole line with monotonic and convex nonlinearity”, J Math Sci, 271:5 (2023), 610
M. V. Nikolaev, U. Dieckmann, A. A. Nikitin, “Application of special function spaces to the study of nonlinear integral equations arising in equilibrium spatial logistic dynamics”, Dokl. Math., 104:1 (2021), 188–192
S. R. Gadzhiev, E. G. Galkin, A. A. Nikitin, “Analytical and Modeling Approaches to Studying the Integral Equation Appearing after a Power-3 Closure”, MoscowUniv.Comput.Math.Cybern., 45:2 (2021), 53
E. G. Galkin, A. A. Nikitin, “Stochastic Geometry for Population-Dynamic Modeling: A Dieckmann Model with Immovable Individuals”, MoscowUniv.Comput.Math.Cybern., 44:2 (2020), 61
Nikolaev M.V., Nikitin A.A., “Application of the Leray-Schauder Principle to the Analysis of a Nonlinear Integral Equation”, Differ. Equ., 55:9 (2019), 1164–1173
Nikolaev M.V., Nikitin A.A., “On the Existence and Uniqueness of a Solution of a Nonlinear Integral Equation”, Dokl. Math., 100:2 (2019), 485–487
Ya. Yu. Larina, L. I. Rodina, “Statistical characteristics of continuous functions and statistically weakly invariant sets of controllable system”, Russian Math. (Iz. VUZ), 61:2 (2017), 28–35
Kalistratova A.V., Nikitin A.A., “Study of Dieckmann?s equation with integral kernels having variable kurtosis coefficient”, Dokl. Math., 94:2 (2016), 574–577
Bodrov A.G., Nikitin A.A., “Qualitative and Numerical Analysis of an Integral Equation Arising in a Model of Stationary Communities”, Dokl. Math., 89:2 (2014), 210–213
Ya. Yu. Larina, L. I. Rodina, “Statisticheskie kharakteristiki upravlyaemykh sistem, voznikayuschie v razlichnykh modelyakh estestvoznaniya”, Model. i analiz inform. sistem, 20:5 (2013), 62–77
V. I. Danchenko, R. V. Rubay, “On integral equations of stationary distributions for biological systems”, Journal of Mathematical Sciences, 171:1 (2010), 34–45