|
Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2009, Volume 267, Pages 214–225
(Mi tm2595)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
Global Topological Invariants of Stable Maps from 3-Manifolds to $\mathbb R^3$
C. Mendes de Jesus, R. Oset Sinha, M. C. Romero Fuster Departament de Geometría i Topología, Facultat de Matemàtiques, Universitat de València, Burjassot, València, Spain
Abstract:
With any stable map from a 3-manifold to $\mathbb R^3$, we associate a graph with weights in its vertices and edges. These graphs are $\mathcal A$-invariants from a global viewpoint. We study their properties and show that any tree with zero weights in its vertices and aleatory weights in its edges can be the graph of a stable map from $S^3$ to $\mathbb R^3$.
Received in April 2008
Citation:
C. Mendes de Jesus, R. Oset Sinha, M. C. Romero Fuster, “Global Topological Invariants of Stable Maps from 3-Manifolds to $\mathbb R^3$”, Singularities and applications, Collected papers, Trudy Mat. Inst. Steklova, 267, MAIK Nauka/Interperiodica, Moscow, 2009, 214–225; Proc. Steklov Inst. Math., 267 (2009), 205–216
Linking options:
https://www.mathnet.ru/eng/tm2595 https://www.mathnet.ru/eng/tm/v267/p214
|
Statistics & downloads: |
Abstract page: | 284 | Full-text PDF : | 58 | References: | 49 |
|