Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2009, Volume 267, Pages 132–137 (Mi tm2594)  

Generating Series of Classes of Hilbert Schemes of Points on Orbifolds

S. M. Gusein-Zadea, I. Luengob, A. Melle-Hernándezb

a Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia
b Departamento de Álgebra, Universidad Complutense de Madrid, Madrid, Spain
References:
Abstract: The notion of power structure over the Grothendieck ring of complex quasi-projective varieties is used for describing generating series of classes of Hilbert schemes of zero-dimensional subschemes (“fat points”) on complex orbifolds.
Received in March 2008
English version:
Proceedings of the Steklov Institute of Mathematics, 2009, Volume 267, Pages 125–130
DOI: https://doi.org/10.1134/S0081543809040105
Bibliographic databases:
UDC: 512.717
Language: Russian
Citation: S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “Generating Series of Classes of Hilbert Schemes of Points on Orbifolds”, Singularities and applications, Collected papers, Trudy Mat. Inst. Steklova, 267, MAIK Nauka/Interperiodica, Moscow, 2009, 132–137; Proc. Steklov Inst. Math., 267 (2009), 125–130
Citation in format AMSBIB
\Bibitem{GusLueMel09}
\by S.~M.~Gusein-Zade, I.~Luengo, A.~Melle-Hern\'andez
\paper Generating Series of Classes of Hilbert Schemes of Points on Orbifolds
\inbook Singularities and applications
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2009
\vol 267
\pages 132--137
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm2594}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2723945}
\zmath{https://zbmath.org/?q=an:1202.14005}
\elib{https://elibrary.ru/item.asp?id=12989368}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2009
\vol 267
\pages 125--130
\crossref{https://doi.org/10.1134/S0081543809040105}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000274252700010}
\elib{https://elibrary.ru/item.asp?id=15327815}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76049086667}
Linking options:
  • https://www.mathnet.ru/eng/tm2594
  • https://www.mathnet.ru/eng/tm/v267/p132
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:297
    Full-text PDF :62
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024