Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2009, Volume 267, Pages 138–145 (Mi tm2591)  

On the Local Picard Group

H. A. Hamm

Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany
References:
Abstract: In his book SGA 2, A. Grothendieck developed Lefschetz theorems for the Picard group, the aim being to compare the Picard group of a projective variety with the one of a hyperplane section. An intermediate object is the Picard group of the formal completion along the hyperplane section. Here we proceed similarly but in the local complex analytic context. The use of the exponential sequence leads to analytic as well as topological depth conditions.
Received in June 2008
English version:
Proceedings of the Steklov Institute of Mathematics, 2009, Volume 267, Pages 131–138
DOI: https://doi.org/10.1134/S0081543809040117
Bibliographic databases:
UDC: 512.732
Language: English
Citation: H. A. Hamm, “On the Local Picard Group”, Singularities and applications, Collected papers, Trudy Mat. Inst. Steklova, 267, MAIK Nauka/Interperiodica, Moscow, 2009, 138–145; Proc. Steklov Inst. Math., 267 (2009), 131–138
Citation in format AMSBIB
\Bibitem{Ham09}
\by H.~A.~Hamm
\paper On the Local Picard Group
\inbook Singularities and applications
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2009
\vol 267
\pages 138--145
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm2591}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2723946}
\zmath{https://zbmath.org/?q=an:1202.14008}
\elib{https://elibrary.ru/item.asp?id=12989369}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2009
\vol 267
\pages 131--138
\crossref{https://doi.org/10.1134/S0081543809040117}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000274252700011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76049086418}
Linking options:
  • https://www.mathnet.ru/eng/tm2591
  • https://www.mathnet.ru/eng/tm/v267/p138
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:171
    Full-text PDF :59
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024