|
Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2006, Volume 255, Pages 88–98
(Mi tm255)
|
|
|
|
This article is cited in 17 scientific papers (total in 17 papers)
Indefinite Sturm–Liouville Problem for Some Classes of Self-similar Singular Weights
A. A. Vladimirov, I. A. Sheipak M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
We continue studying the asymptotics of the spectrum for the boundary value problem $-y''-\lambda \rho y=0$, $y(0)=y(1)=0$, where $\rho $ is a function in the space
$\mathring W_{\!2}^{-1}[0,1]$ with a self-similar primitive. The cases of nonarithmetic and degenerate arithmetic self-similarity of such a primitive are considered.
Received in November 2005
Citation:
A. A. Vladimirov, I. A. Sheipak, “Indefinite Sturm–Liouville Problem for Some Classes of Self-similar Singular Weights”, Function spaces, approximation theory, and nonlinear analysis, Collected papers, Trudy Mat. Inst. Steklova, 255, Nauka, MAIK «Nauka/Inteperiodika», M., 2006, 88–98; Proc. Steklov Inst. Math., 255 (2006), 82–91
Linking options:
https://www.mathnet.ru/eng/tm255 https://www.mathnet.ru/eng/tm/v255/p88
|
Statistics & downloads: |
Abstract page: | 991 | Full-text PDF : | 166 | References: | 71 |
|