|
Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2006, Volume 255, Pages 71–87
(Mi tm254)
|
|
|
|
This article is cited in 14 scientific papers (total in 14 papers)
Pointwise Characterization of Sobolev Classes
B. Bojarski Institute of Mathematics of the Polish Academy of Sciences
Abstract:
We prove that a function $f$ is in the Sobolev class $W_{\mathrm {loc}}^{m,p}(\mathbb R^n)$ or $W^{m,p}(Q)$ for some cube $Q\subset \mathbb R^n$ if and only if the formal $(m-1)$-Taylor remainder $R^{m-1}f(x,y)$ of $f$ satisfies the pointwise inequality $|R^{m-1}f(x,y)|\le |x-y|^m [a(x)+a(y)]$ for some $a\in L^p(Q)$ outside a set $N\subset Q$ of null Lebesgue measure. This is analogous to H. Whitney's Taylor remainder condition characterizing the traces of smooth functions on closed subsets of $\mathbb R^n$.
Received in October 2005
Citation:
B. Bojarski, “Pointwise Characterization of Sobolev Classes”, Function spaces, approximation theory, and nonlinear analysis, Collected papers, Trudy Mat. Inst. Steklova, 255, Nauka, MAIK «Nauka/Inteperiodika», M., 2006, 71–87; Proc. Steklov Inst. Math., 255 (2006), 65–81
Linking options:
https://www.mathnet.ru/eng/tm254 https://www.mathnet.ru/eng/tm/v255/p71
|
Statistics & downloads: |
Abstract page: | 568 | Full-text PDF : | 212 | References: | 93 |
|