Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2006, Volume 255, Pages 71–87 (Mi tm254)  

This article is cited in 14 scientific papers (total in 14 papers)

Pointwise Characterization of Sobolev Classes

B. Bojarski

Institute of Mathematics of the Polish Academy of Sciences
References:
Abstract: We prove that a function $f$ is in the Sobolev class $W_{\mathrm {loc}}^{m,p}(\mathbb R^n)$ or $W^{m,p}(Q)$ for some cube $Q\subset \mathbb R^n$ if and only if the formal $(m-1)$-Taylor remainder $R^{m-1}f(x,y)$ of $f$ satisfies the pointwise inequality $|R^{m-1}f(x,y)|\le |x-y|^m [a(x)+a(y)]$ for some $a\in L^p(Q)$ outside a set $N\subset Q$ of null Lebesgue measure. This is analogous to H. Whitney's Taylor remainder condition characterizing the traces of smooth functions on closed subsets of $\mathbb R^n$.
Received in October 2005
English version:
Proceedings of the Steklov Institute of Mathematics, 2006, Volume 255, Pages 65–81
DOI: https://doi.org/10.1134/S0081543806040067
Bibliographic databases:
UDC: 517.518
Language: English
Citation: B. Bojarski, “Pointwise Characterization of Sobolev Classes”, Function spaces, approximation theory, and nonlinear analysis, Collected papers, Trudy Mat. Inst. Steklova, 255, Nauka, MAIK «Nauka/Inteperiodika», M., 2006, 71–87; Proc. Steklov Inst. Math., 255 (2006), 65–81
Citation in format AMSBIB
\Bibitem{Boj06}
\by B.~Bojarski
\paper Pointwise Characterization of Sobolev Classes
\inbook Function spaces, approximation theory, and nonlinear analysis
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2006
\vol 255
\pages 71--87
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm254}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2301610}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2006
\vol 255
\pages 65--81
\crossref{https://doi.org/10.1134/S0081543806040067}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846878035}
Linking options:
  • https://www.mathnet.ru/eng/tm254
  • https://www.mathnet.ru/eng/tm/v255/p71
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:568
    Full-text PDF :212
    References:93
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024